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Abstract

Experts have a remarkable capability of locating, perceptually orga-

nizing, identifying, and categorizing objects in images specific to their

domains of expertise. Eliciting and representing their visual strategies

and some aspects of domain knowledge will benefit a wide range of

studies and applications. For example, image understanding may be

improved through active learning frameworks by transferring human

domain knowledge into image-based computational procedures, in-

telligent user interfaces enhanced by inferring dynamic informational

needs in real time, and cognitive processing analyzed via unveiling the

engaged underlying cognitive processes.

An eye tracking experiment was conducted to collect both eye move-

ment and verbal narrative data from three groups of subjects with dif-

ferent medical training levels or no medical training in order to study

perceptual skill. Each subject examined and described 50 photograph-

ical dermatological images. One group comprised 11 board-certified

dermatologists (attendings), another group was 4 dermatologists in

training (residents), and the third group 13 novices (undergraduate

students with no medical training).

We develop a novel hierarchical probabilistic framework to discover

the stereotypical and idiosyncratic viewing behaviors exhibited by the

three expertise-specific groups. A hidden Markov model is used to
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describe each subject’s eye movement sequence combined with hier-

archical stochastic processes to capture and differentiate the discov-

ered eye movement patterns shared by multiple subjects’ eye move-

ment sequences within and among the three expertise-specific groups.

Through these patterned eye movement behaviors we are able to elicit

some aspects of the domain-specific knowledge and perceptual skill

from the subjects whose eye movements are recorded during diagnostic

reasoning processes on medical images. Analyzing experts’ eye move-

ment patterns provides us insight into cognitive strategies exploited

to solve complex perceptual reasoning tasks. Independent experts’

annotations of diagnostic conceptual units of thought in the tran-

scribed verbal narratives are time-aligned with discovered eye move-

ment patterns to help interpret the patterns’ meanings. By mapping

eye movement patterns to thought units, we uncover the relationships

between visual and linguistic elements of their reasoning and percep-

tual processes, and show the manner in which these subjects varied

their behaviors while parsing the images.

We further discover that inferred eye movement patterns characterize

groups of similar temporal and spatial properties, and specify a subset

of distinctive eye movement patterns which are commonly exhibited

across multiple images. Based on the combinations of the occurrences

of these eye movement patterns, we are able to categorize the images

from the perspective of experts’ viewing strategies in a novel way.

In each category, images share similar lesion distributions and con-

figurations. Our results show that modeling with multi-modal data,

representative of physicians’ diagnostic viewing behaviors and thought
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processes, is feasible and informative to gain insights into physicians’

cognitive strategies, as well as medical image understanding.
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1

Introduction

1.1 Current problems

People are different not only in how expert they are but also in their personal

approaches to particular cognitive tasks. In order to evaluate the differences, eye

movements, as both direct input and measurable output of real time signal pro-

cessing in the brain, provide us an effective and reliable measure of human visual

strategies and perceptual skill. This perceptual processes dynamically supports

ongoing cognitive and behavioral activity while the viewer seeks specific informa-

tion (1). Since high visual acuity is limited to the foveal region and resolution

fades dramatically in the periphery, the brain has to strategically select the partic-

ular information needed for current cognitive tasks, and simultaneously monitor

the rest at low resolution. As long as we can develop effective approaches which

allow us to elicit and represent latent visual strategies and perceptual skill as im-

plicit human capabilities, eye movements as valuable yet effortless resources will

have a wide variety of applications (2, 3, 4, 5, 6, 7). In particular, in various do-

mains of expertise where perceptual skill is paramount, experts’ perceptual skill is

1
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Figure 1.1: Scheme of our approach to investigate perceptual skill and image

understanding. As previous studies suggested, experts’ perceptual skill is based on

their domain knowledge and expertise, as well as the current information gathered

from the stimuli during perceptual processes. Some aspects of perceptual skill are

manifested by experts’ eye movements. Our approach is to view this structure as an

inverse problem. By tracking experts’ eye movements to follow along the attention

paths, we can not only gain some insight into what interests experts but also how

they perceive images in their domains of expertise. Furthermore, perceptual skill,

as effective and robust indication of cognitive processing, allows us to discover some

meaningful properties of domain-specific images.

considered to be more consistent and informative than traditional explicit human

knowledge acquisition methods, such as manual markings, and annotations.

The eye is continuously moving to sample the visual stimuli in our environ-

2



www.manaraa.com

1.2 Contributions

ment. The brain incorporates memory, heuristics, and prior knowledge to recon-

struct a 3D world from 2D projections via perceptual processes. This perception

which is built from ongoing sensation and registration differs among individuals.

The research questions that interest us are: what approaches allow us to

elicit latent nature of eye movements which is not directly observable, how it

can inform us about experts in their domain of expertise, and in what way eye

movement studies can advance image understanding based on the human visual

system. Furthermore, we also attempt to demonstrate that during image-based

diagnostic reasoning processes experts’ eye movements are one of the best sources

manifesting human cognitive strategies for medical image understanding, and

the key to achieve this is how to maximize its potential while minimizing the

processing load.

In our work we focus on medical images where domain knowledge and per-

ceptual skill are in demand. We use eye movement data as an input for implicit

measures of experts’ perceptual skill to investigate some aspects of their visual

strategies in the diagnostic reasoning processes and medical image understand-

ing. We develop a computational approach to extract measures from eye move-

ment data based on probabilistic modeling. In this way, we are able to use eye

movement measures to explore attentional states and strategies across diagnostic

reasoning tasks, and elicit perceptual skill and cognitive style from experts, as

depicted in Figure 1.1.

1.2 Contributions

The way from a novice to expert can be characterized as a bumpy road of de-

liberate practice and effort (8). For facilitating novices in developing their skills

and knowledge, a deep understanding of expertise and its unique differences to

3
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novices’ knowledge and behavioral strategies is crucial, and will inform design of

effective decision support systems, training programs, and so on.

We propose a novel hierarchical dynamical model which is capable of summa-

rizing the stereotypical and idiosyncratic eye movement patterns from multiple

expertise-specific groups of eye movement sequences. Since eye movement data

are deployed sequentially, we use an autoregressive hidden Markov model (auto-

HMMs) to account for the temporal-spatial nature of each subject’s eye movement

sequence. To characterize the patterned visual behaviors shared within multiple

eye movement sequences of each expertise-specific group, as well as allow such

information to be shared among multiple groups, we combine hierarchical beta

processes to these auto-HMMs in a principled way. What’s more, we interpret

the discovered eye movement patterns by time-aligning them with standardized

thought unit annotations (9).

Furthermore, we facilitate image understanding by incorporating experts’

viewing strategies through an active learning paradigm. We combine multiple ex-

perts’ strengths by summarizing their shared eye movement patterns and decode

the patterns’ semantic meanings. These results can also be applied as semantic

labeling without manual annotation with respect to image understanding.

The major contributions of this work are as follows:

• Capture and describe the overall viewing strategies of subjects at various

training levels during image-based diagnostic-reasoning processes through

eye movement sequences. Results will enhance the understanding of per-

ceptual skill in the medical domain and uncover the role of domain knowl-

edge through eye movement pattern comparison between professionals and

novices.

4
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• Development, implementation, and evaluation of a computational approach

to extract and characterize implicit perceptual skill through objective eye

movement patterns on medical images. Perceptual skill has various man-

ifestations. We profile stereotypical and idiosyncratic eye movement pat-

terns exhibited among multiple subjects of each expertise-specific group.

We demonstrate that the hierarchical beta processes are more appropriate,

capturing common eye movement patterns shared among subjects while

allowing subject-specific variability.

• Development of a new method for eliciting human perceptual skill to im-

prove image understanding. We propose that the extracted perceptual skill,

as an effortless yet valuable cognitive resource, can be combined into ac-

tive learning methods of image understanding based on our approach. To

further evaluating medical images, it is necessary to associate the experts’

meaningful viewing behaviors to pixel-based information.

• Study and contribution to image retrieval and image understanding.

• Synthesis of established, relevant studies in computational cognitive science,

focusing on visual attention modeling, with applications for image retrieval

and image understanding.

1.3 Current and Future Publications

Some of my dissertation work have been published in the proceedings of peer-

reviewed conferences such as ETRA2012 (10), CogSci2012 (11), and CVPR2013

(12). The computational modeling part of our work will be submitted to NIPS2013.

We are also preparing one to two journal papers as a summary of our work.

A journal paper has been submitted to the Journal of Cognitive Psychology

5
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and is pending review. My previous related work has also been published in

(13, 14, 15, 16, 17, 18).

6
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2

Background

2.1 Perception

Perception of the world depends on not only information arriving at sensory re-

ceptors but also the capacity of transforming and interpreting sensory information

based on what one knows and has experienced. The interpretation, which is in-

formed guess in effect, provided by the processes of perception cooperating with

other cognitive processes enables one to respond to the environment effectively. In

particular, perceptual processes make sense of the continuously-changing, chaotic

sensory input from the external energy-filled environment and transfer it into

stable, orderly mental images.

The effortless and automatical characterization of perception broadly refers to

the overall process of apprehending objects and events in the external environment

by sensing, understanding, and identifying them in order to prepare to respond

to them. In this sense, the process of perception can be divided into three stages:

sensation, perceptual organization, and identification/recognition of objects (8).

7
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2.1 Perception

• At the sensation stage, physical energy is converted into the neural signals

streaming into the brain. Retinal cells are activated strongly to edges and

contrasts versus homogenous, unchanging stimulations.

• At the perceptual organization stage, an internal representation of an object

is formed and a mental image of the external stimuli is created. This work-

ing description is computed by integrating past knowledge with the present

evidence from senses and the stimuli within their perceptual context. Sim-

ple sensory features, such as colors, edges, and lines, are synthesized into

the description which can be recognized in the later stage.

• Identification and recognition, as the third stage, assigns meaning to mental

images.

These perceptual processes jointly give rise to a diagram of incoming information

transformation, during which bottom-up processing occurs when the perceptual

representation is derived from the information available in the sensory input, and

top-down processing occurs when the perceptual representation is affected by

one’s prior knowledge, expectations, and other aspects of higher mental function-

ing.

From neuroscience perspective, a widely accepted theory is that there are two

separate systems for visual processing in the brain which are the ventral and

dorsal visual processing streams. The dorsal stream involves some neurons in

the posterior parietal cortex selectively responding to object locations, while the

ventral stream respond selectively to other properties such as object recognition

and form representations. This neurophysiological viewpoint suggests that per-

ceptual processing should be characterized on the basis of both spatial domain

and feature domain.

8
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Attention is a critical topic in perception studies in that focus of attention

determines the portion of the sensory input from the external environment that

will be readily available to perceptual processes. Moreover, visual attention is

a strategic and effective image processing system through selecting and ignoring

visual input based on current goals and past experience.

2.2 Visual Attention

Complex visual information available in real-world scenes or stimuli exceeds the

processing capability of the human visual system. Consequently, human vision

is an actively selective process in which the viewer seeks out specific information

to support ongoing cognitive and behavioral activity, and filters out the rest (1).

Human vision as an exquisite biological system maintains high resolution fovea

subtending less than 2 visual degree of the visual field visible at any instant.

It dynamically samples two dimensional information to reconstruct the three

dimensional world with high resolution.

2.2.1 Visual psychophysics

Since high visual acuity is limited to the foveal region and resolution fades dra-

matically in the periphery, we move our eyes to bring a portion of the visual field

into high resolution at the center of gaze. A series of fixations and saccades are

used to describe such eye movements. Fixations occur when the gaze is held at

a particular location, whereas saccades are rapid eye movements used to repo-

sition the fovea to a new location. Studies have shown that visual attention is

influenced by two main sources of input: bottom-up visual attention driven by

low-level saliency stimulus features which are stimulus properties that are dis-

9
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Figure 2.1: Two example dermatological images examined by the subjects. The

images from left to right are the original images, the primary and secondary abnor-

malities marked and numbered by an experienced dermatologist and three subjects’

complete eye movement sequences acquired during the inspection process super-

imposed onto the image, respectively. To visualize eye movement sequences, each

circle center represents a fixation location and the radius is proportional to the

fixation duration. A line connecting two fixations represents a saccade. Images

used with permission from Logical Images, Inc.

tinctively different from their surroundings’ (19, 20, 21) and top-down process

in which cognitive processes, guided by the viewing task and scene context, in-

fluence visual attention (22, 23). In particular, growing evidence suggests that

top-down information dominates the active scene viewing process and the influ-

ence of low-level salience guidance is minimal (23). These theoretical foundations

provide us with the possibility to pursue this engaged cognitive processing based

on observed eye movements.

There are a number of types of eye movements:

• Saccade denotes moving the eye from one location to another. The features

of saccades are the saccade amplitude which is the length in degrees of

visual angle, and the speed in degree per second.

10
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• Fixation depicts the eye focusing on some target and keeping still. The fea-

tures of fixations are the location (where the eye was fixating), the duration

(how long did the eye fixate), and pupil dilation.

• Smooth pursuit represents the eye closely following a moving target at a

relatively slow speed.

• Vergence means the inward or outward turning of eyes while focusing on a

target to obtain single binocular vision.

• Microsaccade is tiny involuntary eye movement which typically occurs dur-

ing long-duration fixation.

It is acknowledged that covert visual attention can be dissociated from eye move-

ments (24). Nevertheless, saccades which direct gaze to a new location usually

follow a shift of covert attention to this location, leading to speculation that

covert attention serves to plan saccades (25). In particular, studies have shown

that overt visual attention and covert visual attention are tightly coupled in

complex information processing tasks, such as reading and scene perception (26).

Thus, we can gain certain insight into the subjects’ interests or problem-solving

strategies through their eye movements. Both the number of fixations and their

durations are commonly assumed to indicate the depth of information processing

associated with the visual fields. On the other hand, saccade amplitudes, which

are rarely considered in the analysis of eye movement data, may also have an im-

portant impact on some conclusions drawn from the visual processing (23, 27, 28).

The visualization of some types of eye movements from dermatologists examining

dermatological images is illustrated in Figure 2.1.

11
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2.2.2 Modeling visual attention

The concept of the saliency map originally introduced in (19) is based on the

Feature Integration Theory (29). A saliency map characterizes the bottom-up

distinctiveness of a particular location relative to that of other locations in the

scene through its conspicuousness. One derived computational model concerned

with understanding people’s visual attention deployments on natural images was

developed by Itti et al. (30). They built a computational model to evaluate the

saliency level of an image based only on extracted low-level visual features such

as intensity, color and orientation. According to the computed saliency map, they

attempted to predict people’s visual attention allocation. The model has been

tested over various images, and its performance is generally robust. Particularly

in regards to artificial images, its performance is consistent with observations in

human. Saliency map is useful for a variety of application (31, 32). Recent re-

search extended from using only low-level visual features to compute the salient

scene regions to investigate modeling approaches of multiple cognitive factors

that influence visual attention. The main additional factors include one’s expec-

tations about where to find information as well as one’s current information need

(25). To formulate these three cognitive factors, image saliency was redefined in

terms of the combination of both top-down and bottom-up cognitive influence

and computed to predict users’ viewing behaviors from the perspective of proba-

bility theory (33, 34), and users were found to adapt their visual search in order

to optimize the expected information gain (35).

12
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2.3 Perceptual Skill

Perceptual skill is considered to be the crucial cognitive factor accounting for

the advantage of highly trained experts in many domains. Experts who ben-

efit from training, domain knowledge and rich experience can perceive impor-

tant relationships among multiple findings and identify promising abnormalities

(36). Experts generate distinctively different perceptual representations when

they view the same scenes as novices (37). Rather than passively ”photocopy-

ing” the visual information directly from retinas into minds, visual perception

actively interprets the information by altering perceptual representations of the

images based on experience and goals. Without guidance of perceptual exper-

tise and domain knowledge, scenes cannot be interpreted effectively solely based

on visual features. This motivates us to investigate how to formalize perceptual

expertise and reasoning about image contents from the experts’ points of view.

Perceptual skill has been studied across various domains where perceptual

expertise is highly involved such as sports (2), chess (3), geo-spatial image anal-

ysis (4), airport security screening (5) and clinical diagnosis (6, 7, 38). Empirical

perceptual studies of medical image-based diagnosis suggest that subjects vary

their eye movement behaviors while they proceed in diagnosis on medical images.

Furthermore, by analyzing whole sequences of fixation and saccadic eye move-

ments from groups with different expertise levels, significant differences in visual

search strategies between groups show that human expertise plays a great role in

medical image examination. The nature of expert performance of four observer

groups with different levels of expertise has been investigated (7). They com-

pared multiple eye movement measures and suggested these distinctive variations

among the observations of the better performance from higher expertise level are

due to the consequences of experience and training. Eye movement studies on

13
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diagnostic pathology of light microscopy to identify distinctive viewing stereo-

types for each level of experience have also been conducted (6). Their results

suggest that eye movement monitoring could serve as a basis for the creation of

innovative pathology training routines.

Although capturing perceptual skill is challenging, comprehension of the cog-

nitive basis could benefit a wide range of research areas in medical informat-

ics such as medical image retrieval, proactive human computer interaction, and

training. We approach this challenge by working closely with medical specialists

(dermatologists) using human-centered experimental approaches to observe and

record their perceptual processing while inspecting medical images towards diag-

nosis. The inherent dynamic property and complexity of experts’ diagnostic rea-

soning motivates our investigation into the temporal dynamics of this perceptual-

conceptual-interleaving process.

Previous studies fill the gap between physicians’ interpretations and the statis-

tics of pixel values by experts’ manual annotations on segmented images and

mapping into a domain knowledge ontology so as to perform medical image anal-

ysis at a semantic level (39, 40). However, there exists great inter-variability

between experts and inner-variability with which a single expert’s performance

changes from time to time also hinders this approach (41). Moreover experts’

perception, as tacit knowledge, functions below the level of consciousness. The

eye tracking technique allows researchers to study experts’ subconscious image

viewing behaviors by objectively measuring eye movements and is a promising

way to address these challenges. Recently, more and more studies have tried to

incorporate human perceptual skills into image understanding approaches, treat-

ing eye movements as a static process by directly mapping eye movement data

into the image feature space or by weighting image segments. However, the facts

that meaningful perceptual patterns sometimes exist only over time and that the

14
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observed eye movement data are noisy and inconsistent undermine the reliability

and robustness of these methods. In particular, latent behaviors underlying these

observable human behaviors is a critical intermediate step in terms of advancing

image understanding, as shown in Figure 2.2 (c). One of the important contribu-

tions of our work is that we are trying to capture the spatial-temporal patterns

existing in eye movement data.

2.3.1 Applications of perceptual skill

Recent empirical studies (42, 43, 44) suggest that eye movement patterns, as a

promising resource of implicit relevance feedback, are inherently encoded with rich

information about users’ interests. Various computational approaches (43, 45, 46,

47) have been explored to elicit some aspects of cognitive processing information

from users’ eye movements while they were reading documents or viewing images,

and achieved reasonable accuracy on relevance evaluation. Comprehension of

this perceptual processing has implications for research in design of information

systems such as multi-modal interfaces, clinical decision support, performance

support, learning and medical training. Because of the ubiquity of the graphical

information and image-rich tasks, results we present here could benefit a wide

range of user modeling and interaction with novel interfaces that incorporate

knowledge- or agent-based approaches.

Implicit relevance feedback in various forms, captured through unobtrusive

observation of users’ behaviors, is valuable to intelligent interfaces, since it can

provide subconscious information with regard to users’ informational needs or

interests (48, 49, 50). The analysis of users’ thought processes based on their

verbal narratives is a powerful approach which can be used to monitor and un-

derstand users’ dynamic behaviors (51, 52, 53), as well as to shed light on inter-
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personal interaction. In particular, annotations on verbal narratives of think-

ing processes provide concise yet expressive information regarding coordination

between perceptual and conceptual processing of experts’ thinking processes in

medical domain (54). By instructing experts to express their diagnostic reasoning

and decision-making using language, we can coordinate these multi-modal data

to capture their dynamic information interests.

According to previous studies(55, 56), there exist commonalities in tasks such

as diagnostic reasoning due to the remarkable number of regularities in human

information processing, despite all the idiosyncrasies and individual differences.

Idiosyncratic behavior differs from the average behavior of a population of ob-

servers, whereas stereotypical behavior closely complies with such an average

behavior. If we can capture and describe the general strategies of knowledgeable

and skilled doctors, we can apply this to help more novice students. In that

way, the educational experience of the medical student should be improved, as

they are in real need of basic strategies and principles of diagnostic-reasoning.

The question is whether cognitive strategies can be captured and characterized

through eye movement sequences during diagnostic reasoning processes. In order

to differentiate between such types of behavior, previous methods make use of sim-

ilarity measures that allow for the comparison between eye movement sequences

of different observers (56). However, these methods are inevitably constrained by

various limitations, which will be elaborated in the following section.

So as to capture medical specialists’ (dermatologists) stereotypical and id-

iosyncratic visual behaviors from their eye movements, we use human-centered

experimental approaches, which means incorporating human knowledge and skills

into the procedure, to observe and record their reasoning processes while inspect-

ing medical images. We then profile the shared time-evolving eye movement

patterns among physicians through our computational model, and also time-align
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eye movement patterns with semantic group labels annotated by experts based on

other dermatologists’ verbal descriptions. We discuss the implications of integrat-

ing these multi-modal data towards understanding users’ dynamic informational

needs.

2.3.2 Evaluation of visual behaviors

Since the eye movement analysis method of summary fixation statistics is lim-

ited in terms of eliciting hidden knowledge from eye tracking data, the area of

developing effective metrics for comparing and evaluating large amounts of fix-

ation and saccadic eye movement data represented as scanpaths becomes more

and more prominent (57, 58, 59, 60, 61). The basic idea of the current eye move-

ment analysis methods generally needs to define a notion of “distance” between

eye movement sequences first. They evaluate the similarity of the eye movement

sequences by calculating the pairwise distances between them. These methods

can be broadly categorized into two classes.

One class of these algorithms are based on predefined AOIs (61). A temporal

sequence of AOIs is defined based on either dividing a scene in equally spaced

bins or segmenting semantically meaningful regions in the scene. Then string-edit

algorithms can be used to compare different sequences. These algorithms calcu-

late the distance between two strings as the minimum number of edits required

to transform one into the other. However, there are some issues: human inter-

vention is still needed with respect to defining AOIs or specifying the size of the

square regions and their locations; fixation durations are not taken into account;

string editing comparison among multiple scanpaths fail to measure meaningful

variations between scanpaths. A recent study develops a comprehensive pair-wise

comparison approach in order to take more eye movement features into account
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(62).

The other analysis methods are based on clustering techniques (59). Clusters

of fixation points are first grouped via parametric or non-parametric clustering

algorithms based on their relative locations (x-y coordinate). Foveal acuity is

usually modeled as a 2D Gaussian distribution around a fixation location. Since

the spatial resolution of the visual processing attenuates sharply from fovea vision

to peripheral vision, Gaussian distribution is a reasonable approximation because

of its light tails. After these clusters are labeled, we can measure what percentage

of the image is selected for high acuity and foveal registration by summing up

the number of pixels falling within this range and calculating as percentage of

total number of pixels in the viewed image. The problems with this methods are

that sequential information is ignored, the clusters are not always meaningful,

and fixation durations or saccade information are still not taken into account.

To compensate for the above limitations, the Earth Mover’s Distance (EMD)

metric was proposed to measure the similarity of different visual behavior se-

quences (63). The similarity between eye movement sequences are viewed as a

transportation problem by defining one sequence as a set of piles of earth and

another sequence as a collection of holes and by setting the cost for a pile-hole

pair to equal the ground distance between fixation in the two sequences. Stud-

ies show that this type of pair-wise comparison metric is very sensitive to data

variance and performs particular poorly to deal with noise.

Some studies adopted HMMs to measure or profile eye movement sequences

(38, 64, 65). The disadvantage of these approaches is that they either have to

heuristically predefine the number of hidden states or use standard parametric

model selection methods to identify a “best” single number, the strengths and

weaknesses of which in this problem setting is unknown. Two alternatives to

HMMs are AOI-based or clustering-based methods mentioned above.
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Although comprehensive eye movement features are taken into account in re-

cent studies (62), current pairwise comparison algorithms among multiple scan-

paths are sensitive to data noise and minor variations between scanpaths. Fur-

thermore, meaningful patterns may only exist over the time of complete processes,

rather than comparing them piece by piece. This suggests a Markovian frame-

work in which the model transitions among patterned eye movement behaviors,

and these meaningful components are associated with perceptual expertise and

domain knowledge.

Recently there has been significant interest in augmenting dynamic systems’

capabilities of modeling time series by combining stochastic processes. The hier-

archical Dirichlet process (HDP) based HMMs allow the number of hidden states

to be learned from observations by treating transition distributions as realiza-

tions of the HDP over countably infinite state spaces (66, 67, 68). The infinite

factorial HMM models a single time-series with emissions dependent on a feature

with potentially infinite dimensionality which evolves with independent Markov

processes (69). Beta process (BP) based HMMs model multiple time series and

capture an infinite number of potential dynamical modes which are shared among

the series using the Indian buffet process (IBP) by integrating over the latent BP

(70). However, these approaches lack the capability of modeling multiple related

but distinct families of time series. This modeling requirement in our problem

scenario motivates us to develop a novel hierarchically-structured dynamic model

which is capable of profiling stereotypical and idiosyncratic patterns from multiple

expertise-specific groups of eye movement sequences.
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Figure 2.2: Diagram of three approaches to image understanding. In (a), early

image understanding approaches attempt to interpret images solely based on sta-

tistical analysis of image pixel values. As shown in (b), recently researchers have

incorporated human subjectivity into image understanding by essentially treating

observed human behavioral data as weights added into selected image features or

segments. Since this approach fails to consider the underlying behavior patterns

and cognitive processing (domain knowledge, expertise, expectations...) that dom-

inates observable human behaviors, it is hindered by the noisy and inconsistent

nature of the observed behaviorial data. In (c), we propose that novel approaches

to extract tacit knowledge from experts engaging in these observable behaviors

will be a more effective approach to incorporate human capabilities. The extracted

behavior patterns are not only more robust and consistent but also shed light on

revealing latent cognitive processing. The dynamic nature of human behaviors

involved in diagnostic reasoning is important. Our approach aims at not only cap-

turing spatial information but also temporal characteristics of human behaviors.
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Probabilistic Modeling

Approaches

If we assume that components of human cognitive processing approximately follow

the principles of probability theory, we can computationally reason backwards

from observed human behavioral data to the engagement of particular cognitive

functions as an inverse problem. In this way, the computational framework for

probabilistic inference provides a general approach to understanding the deeper

cognitive processing that is not directly observable to us based on sparse, noisy

and ambiguous behavioral data.

To understand the computational basis of the knowledge-based diagnosis pro-

cesses, there are several principles that must be addressed.

Persons may have different prior experience of what the world would be. This

leads to their use of unique prior knowledge to guide a learning process. Bayesian

methods of the probability theory allow us to incorporate various forms of prior

knowledge into learning, inference and decision-making in a principled manner.
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The basic notion called “prior” can be formulated as the probabilistic represen-

tation of human abstract knowledge regarding how they expect the world to be.

To uncover what are the forms and contents of persons’ knowledge of the world

and make comparison between them, there are two schools of approaches avail-

able. One typically represents the knowledge relevancy with simple probabilistic

models based on numbers or parametric probability distributions without con-

sidering more structural representation. The other approaches the problem with

structured logical and symbolic knowledge representation. The tools they nor-

mally use are graphs, grammars and system of logic. We realize that the integra-

tion of the two is absolutely essential to our particular study on perception-based

diagnostic-reasoning. To combine these two knowledge representation strategies,

we need to use structures and symbols as a way of representing the structure

of human knowledge and then define probabilistic models over those structure

representations. As Glenn Shafer and Judea Pearl pointed out, probability is not

really about numbers, it is about the structure of reasoning. Graphical models as

a general class of probabilistic models are used to define probabilities over struc-

tured knowledge representations. This modeling technique allows us to model

not only how systems of knowledge can be applied to guide perceptual processing

but also how they can be learned by various kinds of statistical inferences. The

key characters of diagnostic reasoning processes can be depicted using several

properties of the probabilistic graphical models:

• Levels of abstraction: Hierarchical probabilistic models allow us to use mul-

tiple levels of abstraction to represent human cognitive processing. We

assume there are multiple levels of representation which are all linked by

probability distribution, for example physicians’ prior at the lowest level

(a set of specific diagnostic cues) itself is generated by a distribution over

distribution, some sort of prior on priors. And by doing this inference on
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multiple levels models, we can understand how physicians acquire the con-

ceptual knowledge of the world as well as how they use it to guide their

perceptual reasoning process.

• Infinity of learning: medical training is not just accumulation of more and

more bits of knowledge, but qualitatively transformation as real cognitive

growth. This requires us to have ways of building probabilistic models

which in some sense are not constrained by initial structure but where the

structure itself can do qualitative transformation as data come in and may

grow in qualitative ways. We propose to use non-parametric probabilis-

tic graphical models whose structures can keep evolving as more data are

observed via assimilation-accommodation mechanism.

• Dynamics of learning: If the diagnostic-reasoning process can be charac-

terized as dynamic systems, we can reinterpret these dynamic systems as

stochastic processes that can be represented as non-parametric probabilistic

graphical models.

According to these analysis, we review the statistical theories and methodologies

upon which our contributions are based.

In Section 3.1, we discuss the theoretical rationale for the Bayesian approaches.

In Section 3.2 we describe the exponential families which represent a family of

functions and probability distributions extensively used as data models in the

Bayesian approaches. In Section 3.3 we analyze some attractive properties of the

exponential families in order to uncover the reasons why they are widely used in

probabilistic modeling works. In Section 3.4 and Section 3.5, we propose conju-

gate priors as the other critical component of the Bayesian approaches. Through

Section 3.6 to Section 3.8, we demonstrate several conjugate priors and their like-

lihoods, and discuss their mathematical and computational properties as well.
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3.1 Exchangeability

These examples will be served as some basic components in our modeling ap-

proach.

3.1 Exchangeability

In some cases the physical process giving rise to the observed data is known, a

probabilistic topological structure can be determined accordingly. This proba-

bilistic topological structure is composed of a set of interrelated random variables

and their dependence. For instance, hidden Markov models (HMMs) are often

derived from some known dynamical systems, and Markov random fields (MRFs)

as a spatial generation from HMMs arise from the discretization of stochastic

partial differential equations. However, in other learning cases where the genera-

tive process may be unknown or too complex to be characterized explicitly, some

simple assumptions about the indistinguishability of different observations can

lead naturally to a family of hierarchical, directed topological structures.

The concept of exchangeability serves as a critical theoretical base for various

statistical approaches. Assume we are gathering data in an attempt to make

predictions about future observations of the underlying random process. With the

strong assumption of the data being independently distributed, we would treat

every new data point individually with no need to predict future observations

given the past, since:

p(y1, ..., yn) =
n∏
i=1

p(yi) (3.1)

implies that

p(yn+1, ..., ym|y1, ..., yn) = p(yn+1, ..., ym) (3.2)
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However, we could relax the assumption using a weaker one which often bet-

ter describes the observations. The weaker assumption is exchangeability which

states that the data order we observe is inconsequential.

Definition 3.1.1. A sequence of random variables y1, y2,..., yn is said to be

finitely exchangeable if

y1, y2, ..., yn $ yπ(1), yπ(2), ..., yπ(n) (3.3)

for every permutation π on {1, ..., n}. Here, we use the notation $ to mean

equality in distribution.

These variables are exchangeable in the sense that every permutation, or re-

ordering, of their indices has equal probability. This definition suggests that

independence implies exchangeability, but not vice versa. Since the computa-

tional problems are often involved with handling cases where data is continually

accumulated or an upper bound is challenging, it would be useful to extend the

notion for infinite sequences.

Definition 3.1.2. A sequence y1, y2,... is infinitely exchangeable if every finite

subsequence is finitely exchangeable.

When no auxiliary information is available, this assumption is usually rea-

sonable. Sometimes, we can take a further step to relax exchangeability by con-

sidering partially exchangeable data where some auxiliary information allows us

to partition the data into exchangeable sets. An important result derived from

the assumption of exchangeable data is de Finetti’s theorem which states that

an infinite sequence of random variables y1, y2,... is exchangeable if and only if

there exists a random probability measure ν with respect to which y1, y2,... are
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conditionally independent identically distributed (i.i.d.) with distribution ν. The

general form of the de Finetti theorem:

Theorem 3.1.1. If y1, y2,... is an infinitely exgchangeable sequence of real-

valued random variables with probability measure P , then there exists a probability

measure µ defined on the space of all probability measures ℘(R) on R such that

P (y1 ∈ A1, ..., yn ∈ An) =

∫
℘(R)

n∏
i=1

ν(Ai)µ(dν) (3.4)

Furthermore, µ is the law of a probability measure ν, where ν is almost surely

defined by the limiting empirical measure. Namely,

ν(B)
a.s.
= lim

n→∞

1

n

n∑
i=1

IB(yi), ν ∼ µ (3.5)

where B ranges over all elements of the Borel σ-algebra. The measure µ is often

referred to as the de Finetti measure.

De Finetti proved this in the case of binary random variables (71). There is

also a simpler proof in more modern terms in (72) and (73). Generatively, the

theorem states that if y1, y2, ... are infinitely exchangeable, then there exists a

measure µ on measures such that:

ν ∼ µ (3.6)

yi|ν
i.i.d.∼ ν (3.7)

According to de Finetti theorem, the Bayesian perspective of the parameter yield-

ing the observations i.i.d. is treated as a random quantity with some distribution

µ. On the contrary, from the frequentist perspective the parameter yielding the

observations i.i.d. is considered as a fixed unknown quantity. If we focus our at-

tention onto the finite-dimensional parameter θ cases, we can invoke the following

corollaries,
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Corollary 3.1.1. Assuming the required densities exist, and assuming the con-

ditions of Theorem 2.5.1 hold, then exists a distribution function Q such that the

joint density of y1,..., yn is of the form

p(y1, ..., yn) =

∫
Θ

n∏
i=1

p(yi|ϑ)dQ(ϑ) (3.8)

with p(·|ϑ) representing the density function corresponding to the finite-dimensional

parameter ϑ ∈ Θ.

The above corollary explicitly indicates that the de Finetti theorem moti-

vates the concept of a prior distribution Q(·) and a likelihood function p(y|·).

In Bayesian statistics, this is known as a hierarchical model due to the layer-

ing by which observations depend on parameters, which are in turn related to

hyper-parameters (73, 74).

Corollary 3.1.2. Given that the conditions of Corollary 2.5.1 hold, then the

predictive density is given by

p(ym+1, ..., yn|y1, ..., ym) =

∫
Θ

p(yi|ϑ)dQ(ϑ|y1, ..., ym) (3.9)

where

dQ(θ|y1, ..., ym) =

∏m
i=1 p(yi|θ)dQ(θ)∫

Θ

∏m
i=1 p(yi|ϑ)dQ(ϑ)

(3.10)

The form of the predictive density in Eq. (3.9) shows a core idea of Bayesian

inference, which is that the prior belief Q(θ) is updated into a posterior belief

Q(θ|y1,...,ym) through an application of Bayes rule without changing our view of

the existence of an underlying random parameter θ yielding the data i.i.d. In

particular, the process of forming the posterior distribution in Eq. (3.10) from
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the prior by incorporating observations is a fundamental step in examining the

predictive distribution.

The issue of tractable inference often leads to the use of conjugate priors. Be-

sides mathematical convenience, conjugate priors allow us to encode and quantify

prior knowledge as a set of fictional observations in the posterior distributions.

The goal of flexibility in our models motivates us to adopt non-parametric meth-

ods in terms of making as few assumptions as possible. Another key issue of the

Bayesian framework is in characterizing a likelihood distribution for how our data

are given rise to condition a parameter value θ. This choice is often motivated

by practical considerations that are typically related to those of choosing a prior

distribution. As practitioners, we do not focus on a full analysis of model selec-

tion in this thesis, instead we use a combination of our insight on the process and

our adherence to computational limitations to define a model.

3.2 Exponential Families

An exponential family of probability distributions is characterized by certain

sufficient statistics which summarize the observations using a fixed number of

values (75, 76, 77). To present a general form of exponential family, let x be

a random variable with values from a sample space X, which may be either

continuous or discrete. The corresponding exponential family of densities is given

by

p(x|θ) = ν(x) exp{
∑
a∈A

θaφa(x)− Φ(θ)} (3.11)

where {φa|a ∈ A} is a set of statistics or potentials, θ ∈ R|A| are the family’s

canonical parameters, and ν(x) is a non-negative reference measure. The param-

eter θ can be set either to fixed constants or latent random variables. The log
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partition function Φ(θ) is defined to normalize p(x|θ):

Φ(θ) = log

∫
X

ν(x) exp{
∑
a∈A

θaφa(x)}dx (3.12)

so that it integrates to one.

This construction is valid as long as the canonical parameters θ belong to the

set Θ for which the log partition function is finite:

Θ , {θ ∈ R|A||Φ(θ) <∞} (3.13)

Since Φ(θ) is a convex function, Θ is also convex. In particular, the exponential

family is said to be regular when Θ is open. Many probability density functions

belong to regular exponential families, including the Bernoulli, beta, Poisson,

Gaussian and gamma densities (73, 74). We present a set of examples of such

manipulations.

Bernoulli:

p(x|θ) = θx(1− θ)1−x x ∈ {0, 1} (3.14)

ln(p(x|θ) = x ln θ + (1− x) ln(1− θ) (3.15)

= ln(
θ

1− θ
)x+ ln(1− θ) (3.16)

Geometric:

p(x|θ) = (1− θ)θx x ∈ {0, 1, 2, ...} (3.17)

ln p(x|θ) = ln(θ)x+ ln(1− θ) (3.18)

Poisson:

p(x|θ) =
θxe−θ

x!
x ∈ {0, 1, 2, ...} (3.19)

ln p(x|θ) = ln(θ)x− θ − lnx (3.20)
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Exponential:

p(x|θ) = θe−θx x > 0 (3.21)

ln p(x|θ) = −θx+ ln θ (3.22)

3.3 Properties of canonical exponential families

In this section, we discuss some properties of exponential families as the motiva-

tion of its widely use through the notion of sufficiency and information theory.

In particular, the following properties of the log partition function is critical in

the study of exponential families (75, 76, 77).

Proposition 3.3.1. The log partition function Φ(θ) of Eq. 3.12 is convex (strictly

so for minimal representations) and continuously differentiable over its domain

Θ. Its derivatives are the cumulants of the sufficient statistics φa|a ∈ A, so that

∂Φ(θ)

∂θa
= Eθ[φa(x)] ,

∫
X

φa(x)p(x|θ)dx (3.23)

∂2Φ(θ)

∂θa∂θb
= Eθ[φa(x)φb(x)]− Eθ[φa(x)]Eθ[φb(x)] (3.24)

The log partition function Φ(θ) is also called cumulant generating function

of the exponential family for this reason, the convexity of which has important

implications for other properties of exponential families (78, 79).

For problems of model selection and approximation, we need a similarity mea-

sure of probability distributions. To use the relative entropy or Kullback-Leibler

(KL) divergence to measure an approximation accuracy, we need to introduce

some information-theoretic concepts first (80).
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Shannon’s measure of entropy conveys the inherent uncertainty of a random

variable x taking values within a finite space X:

H(x) = −
∑
x∈X

p(x) log p(x) (3.25)

where p(x) is the associated probability mass function defining the law of

x. The notion of entropy can be straightforwardly extended to jointly random

variables (x, y) ∼ p(x, y), in which the joint entropy is defined as

H(x, y) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (3.26)

Similarly, a conditional entropy of a random variable x given y can be defined:

H(x|y) = −
∑
x∈X

∑
y∈Y

p(x, y) logp(x|y) (3.27)

The joint entropy H(x, y) is simply the sum of the entropy of y, H(y), and

the conditional entropy of x given y, H(x|y), which has a nice interpretation

with respect to conservation of uncertainty. The change in entropy of a random

variable x after an observation y is given by the mutual information:

I(x; y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(3.28)

= −
∑
x∈X

∑
y∈Y

p(x, y)(log p(x)− log p(x|y)) (3.29)

= H(x)−H(x|y) (3.30)

A nice property of mutual information is that it is symmetric in terms of I(x; y)

can also be seen as the change in entropy of y after observing x.

The above definitions can be extended to continuous random variables by

considering differential entropy

h(x) = −
∫
X

p(x) log p(x)dx (3.31)
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and differential conditional entropy

h(x|y) = −
∫
X

∫
Y

p(x, y) log p(x|y)dxdy (3.32)

However, differential entropy does not have the non-negative property as discrete

entropy does.

The KL divergence between two probability distributions p(x) and q(x) equals

D(p||q) =

∫
X

p(x) log
p(x)

q(x)
dx (3.33)

Although KL divergence is not actually a distance metric because of its asym-

metric property, it is informative for variational methods about a ’better’ approx-

imation. From this definition, mutual information can be interpreted as the KL

divergence between a joint distribution of (x, y) and the distribution assuming

they are independent:

D(p||q) = D(p(x, y)||p(x)p(y)) (3.34)

The mutual information which is defined with respect to differential entropy is

presented in (80).

Learning problems can be posed as a search for the best approximation of an

empirically derived target density p̃(x). The KL divergence D(p||q) is a natu-

ral measure of the accuracy of an approximation q(x). The following moment-

matching conditions elegantly characterize the optimal approximating density for

exponential families:

Proposition 3.3.2. Let p̃ denote a target probability density, and pθ an exponen-

tial family. The approximating density pθ minimizing D(p̃||pθ) then has canonical

parameters θ̂ chosen to match the expected values of that family’s sufficient statis-

tics:

Eθ̂[φa(x)] =

∫
X

φa(x)p̃(x)dx a ∈ A (3.35)
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For minimal families, these optimal parameters θ̂ are uniquely determined.

It is worth noting that for non-minimal families, while the optimal parameters

are not unique, the resulting distribution pθ is still the same, since all the different

minimizers are just re-parameterizations of the same density.

The approximating density pθ minimizing D(p̃||pθ) depends only on the po-

tential functions’ expected values under p̃(x), so that these statistics are sufficient

to determine the closest approximation.

We normally observe L independent samples {x(l)}Ll=1 from a target density

p̃(x) instead of that density explicitly itself. In this case, we define the empirical

density of the samples as follows:

p̃(x) =
1

L

L∑
l=1

δ(x, x(l)) (3.36)

Here, δ(x, x(l)) is the Dirac delta function for continuous X, and the Kronecker

delta for discrete X. In such case, there is a correspondence between information

projection and maximum likelihood (ML) parameter estimation as stated in the

following proposition:

Proposition 3.3.3. Let pθ denote an exponential family with canonical parame-

ters θ. Given L independent, identically distributed samples {x(l)}Ll=1, with empir-

ical density p̃(x) as Eq. 3.36, the maximum likelihood estimate θ̂ of the canonical

parameters coincides with the empirical density’s information projection:

θ̂ = arg max
θ

L∑
l=1

log p(x(l)|θ) = arg min
θ
D(p̃||pθ) (3.37)

These optimal parameters are uniquely determined for minimal families, and

characterized by the following moment matching conditions:

Eθ̂[φa(x)] =
1

L

L∑
l=1

φa(x
(l)) a ∈ A (3.38)
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From these results, we can see that certain statistics are sufficient to char-

acterize the best exponential family approximation of a given target density. In

principle, Prop. 3.3.2 and Prop. 3.3.3 suggest a straightforward procedure for

learning exponential families: estimate appropriate sufficient statistics, and then

find corresponding canonical parameters via convex optimization (75, 76, 79).

However, significant difficulties may arise in practice. Sometimes the required

statistics cannot be directly measured such as semi-supervised learning from par-

tially labeled training data, or calculation of the corresponding parameters is

intractable in some large complex models. Another constraint of these results

is the selection of appropriate exponential families. In particular, since the cho-

sen statistics are sufficient for parameter estimation, the learned model cannot

capture aspects of the target distribution neglected by these statistics. These con-

cerns motivate us to non-parametric methods which extend exponential families

to learn richer and more flexible models.

Theorem 3.3.1. Consider a collection of statistics {φa|a ∈ A}, whose expecta-

tions with respect to some target density p̃(x) are known:∫
X

φa(x)p̃(x)dx = µa a ∈ A (3.39)

The unique distribution p̂(x) maximizing the entropy H(p̂), subject to these mo-

ment constraints, is then a member of the exponential family of Eq. 3.11, with

ν(x) = 1 and canonical parameters θ̂ chosen so that Eθ̂[φa(x)] = µa.

Previous propositions show that it is sufficient to characterize the best ex-

ponential family approximation of a given target density by certain statistics.

This theorem indicates that if those statistics are the only available informa-

tion about a target density, then the corresponding exponential family provides
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a natural model which imposes the fewest additional assumptions about the data

generation process. Eq. 3.39 implicitly assumes the existence of some distribu-

tion satisfying the specified moment constraints. Also given insufficient moment

constraints for non-compact continuous spaces, the maximizing density may be

improper and have infinite entropy.

3.4 Incorporating prior knowledge

Besides the fact that exponential families use sufficient statistics to character-

ize the likelihood function of the parameters given observed training data, we

normally have some prior knowledge about the process giving rise to the data.

Bayesian methods allow a principled way of incorporating prior knowledge with

likelihoods by treating the parameters of exponential family density functions as

random variables. In particular, consistent incorporation of prior knowledge can

dramatically improve the accuracy and robustness of the learned model when

datasets are small (73).

Bayesian analysis begins with a prior distribution p(θ|λ) describing people’s

available knowledge about how the data are generated. Then an exponential

family p(x|θ) with canonical parameters θ updates our belief. Given L i.i.d.

observations {x(l)}Ll=1, the posterior distribution of the canonical parameters can

be written as follows according to Bayes’ rule:

p(θ|x(1), ..., x(L), λ) =
p(x(1), ..., x(L)|θ, λ)p(θ|λ)∫

Θ
p(x(1), ...x(L)|θ, λ)p(θ|λ)dθ

(3.40)

∝ p(θ|λ)
L∏
l=1

p(x(l)|θ) (3.41)

Since for minimal exponential families the canonical parameters are uniquely

associated with expectations of that family’s sufficient statistics, the posterior
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distribution of Eq. 3.40 describes our belief about the statistics which is likely to

be exhibited by future observations.

When statistical models are used to predict future observations, the predic-

tive likelihood of a new observation x̄ can be written as follows given L i.i.d.

observations:

p(x̄|x(1), ..., x(L), λ) =

∫
Θ

p(x̄|θ)p(θ|x(1), ..., x(L), λ)dθ (3.42)

where the posterior distribution over parameters θ is as in Eq. 3.40. This predic-

tive likelihood provides us typical predictions which are more robust than single

parameter estimation by averaging over our posterior uncertainty in the param-

eter θ. However, the predictive likelihood computation is intractable for many

practical models. In these cases, the parameters’ posterior distribution is often

approximated by a single maximum a posteriori (MAP):

θ̂ = arg max
θ
p(θ|x(1), ..., x(L), λ) (3.43)

= arg max
θ
p(θ|λ)

L∏
l=1

p(x(l)|θ) (3.44)

This approach is best justified when the training set size L is large, so that the

posterior distribution is tightly concentrated.

A fully Bayesian analysis should also specify a prior distribution p(λ) over the

hyper-parameter λ. An empirical Bayesian approach (73), however, estimates the

hyper-parameter λ by maximizing the training data’s marginal likelihood:

λ̂ = arg max
λ

p(x(1), ..., x(L)|λ) (3.45)

= arg max
λ

∫
Θ

p(θ|λ)
L∏
l=1

p(x(l)|θ) (3.46)

In situations where this optimization is intractable, we can optimize the predictive

likelihood of a held-out dataset through cross-validation approaches (73).
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It is useful to have compact ways of characterizing large datasets when com-

puting the posterior distributions and predictive likelihoods. The following the-

orem shows that the notions of sufficiency can be used to simplify learning with

prior knowledge (73).

Theorem 3.4.1. Let p(x|θ) denote an exponential family with canonical parame-

ters θ, and p(θ|λ) a corresponding prior density. Given L i.i.d. samples {x(l)}Ll=1,

consider the following statistics:

Φ(x(1), ..., x(L)) , { 1

L

L∑
l=1

φa(x
(l))|a ∈ A} (3.47)

These empirical moments, along with the sample size L, are then said to be para-

metric sufficient for the posterior distribution over canonical parameters, so that

p(θ|x(1), ...x(L), λ) = p(θ|Φ(x(1), ..., x(L)), L, λ) (3.48)

Equivalently, they are predictive sufficient for the likelihood of new data x̄:

p(x̄|x(1), ...x(L), λ) = p(x̄|Φ(x(1), ..., x(L)), L, λ) (3.49)

The significant compression provided by the above statistics makes exponen-

tial families particularly useful. This theorem also emphasizes the importance of

selecting appropriate sufficient statistics, since other features of the data cannot

affect subsequent model predictions.

3.5 Properties of conjugate priors

The motivation to introduce conjugate priors is that although Theorem 3.4.1

shows that statistical predictions p(x̄|x(1), ...x(L), λ) in exponential families p(x|θ)
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can be expressed in functions solely of the chosen sufficient statistics Φ(x(1), ..., x(L)),

it neither provides us with an explicit representation of the posterior distribution

p(θ|x(1), ...x(L), λ) over model parameters nor guarantee a tractable computation

of the predictive likelihood p(x̄|x(1), ...x(L), λ). We, therefore, describe an expres-

sive family of prior distributions which are analytically tractable.

Let p(x|θ) denote a family of probability densities parameterized by θ. A

family of prior densities p(θ|λ) is said to be conjugate to p(x|θ) if, for any obser-

vation x and hyper-parameters λ, the posterior distribution p(θ|x, λ) remains in

that family:

p(θ|x, λ) ∝ p(x|θ)p(θ|λ) ∝ p(θ|λ̄) (3.50)

In this case, the posterior distribution is compactly described by an updated set

of hyper-parameters λ̄. For exponential families parameterized as in Eq. 3.11,

the general form of conjugate priors is as follows (73, 75):

p(θ|λ) = exp{
∑
a∈A

θaλ0λa − λ0Φ(θ)− Ω(λ)} (3.51)

While this functional form duplicates the exponential family’s, the interpretation

is different: the density is over the space of parameters Θ, and determined by

hyper-parameter λ. The conjugate prior is proper, or normalizable, when the

hyper-parameters take values in the space Λ where the log normalization constant

Ω(λ) is finite:

Ω(λ) = log

∫
Θ

exp{
∑
a∈A

θaλ0λa − λ0Φ(θ)}dθ (3.52)

Λ , {λ ∈ R|A|+1|Ω(λ) <∞} (3.53)

Note that the dimension of the conjugate family’s hyper-parameters λ is one

larger than the corresponding canonical parameters θ.
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The following result verifies that the conjugate family of Eq. 3.51 satisfies

the definition of Eq. 3.50, and provides an intuitive interpretation for the hyper-

parameters:

Proposition 3.5.1. Let p(x|θ) denote an exponential family with canonical pa-

rameters θ, and p(θ|λ) a family of conjugate priors defined as in Eq. 3.51. Given

L independent samples {x(l)}Ll=1, the posterior distribution p(x̄|x(1), ...x(L), λ) re-

mains in the same family:

p(θ|x(1), ..., x(L), λ) = p(θ|λ̄) (3.54)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
l=1 φa(x

(l))

λ0 + L
a ∈ A (3.55)

Integrating over Θ, the log-likelihood of the observations can then be compactly

written using the normalization constant of Eq. 3.52:

log p(x(1), ...x(L)|λ) = Ω(λ̄)− Ω(λ) +
L∑
l=1

log ν(x(l)) (3.56)

In principle, Prop. 3.5.1 provides a framework for conjugate analysis with

any exponential family. From this proposition, we can see that the posterior

hyper-parameters λ̄a are a weighted average of the prior hyper-parameters λa

and the corresponding sufficient statistics of the observations. Conjugate priors

can thus be effectively viewed as a set of synthetic pseudo-observations, where

λa is interpreted as the average of φa(x) with respect to this synthetic data, and

λ0 is the effective size of this synthetic dataset which expresses confidence in

these prior statistics and need not be integral. This interpretation often makes it

easy to select an appropriate conjugate prior, since hyper-parameters correspond

to sufficient statistics with intuitive meaning. In particular, when the number
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of observations L is large relative to λ0, the posterior distribution is primarily

determined by the observed sufficient statistics.

In the following sections, we briefly outline some probability density and mass

functions, and the associated conjugate analysis used extensively in this thesis.

3.6 Multinomial and Bernoulli observations

Consider a random variable x taking one of K discrete, categorical values, so

that X = {1, ..., K}. Any probability mass function, or distribution, p(x) is then

parameterized by the probabilities πk , Pr[x = k] of the K discrete outcomes:

p(x|π1, ..., πK) =
K∏
k=1

π
δ(x,k)
k δ(x, k) ,

{
0 x 6= k

1 x = k
(3.57)

Given L observations {x(l)
l=1}L, the multinomial distribution (73, 74, 81) gives the

total probability of all possible length L discrete sequences taking those values:

p(x(1), ..., x(L)|π1, ..., πK) =
L!∏
k Ck!

K∏
k=1

πCkk Ck ,
L∑
l=1

δ(x(l), k) (3.58)

When K = 2, this is known as the binomial distribution. Through comparison

with Eq. 3.11, multinomial distributions define regular exponential families with

sufficient statistics φk(x) = δ(x, k) and canonical parameters θk = log πk. In

a minimal representation, only the first (K − 1) statistics are necessary. The

multinomial distribution is valid when its parameters lie in the (K − 1)-simplex:

ΠK−1 , {(π1, ..., πK)|πk ≥ 0,
K∑
k=1

πk = 1} (3.59)

= {(π1, ..., πK−1, 1−
K−1∑
k=1

πk)|πk ≥ 0,
K−1∑
k=1

πk ≤ 1} (3.60)

In particular, ΠK−1 is the set defining the simplex. Note that this implicitly

defines πK as the complement of the probabilities of the other (K−1) categories.

40



www.manaraa.com

3.6 Multinomial and Bernoulli observations

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Beta and Dirichlet distributions. (a)-(b) Beta densities with large

parameters are unimodal while with small values favor biased binomial distribu-

tions. (c)-(f) Dirichlet densities on Π2 = (π1, π2, 1 − π1 − π2). A uniform prior,

an unbiased and a biased unimodal priors, and a prior favoring sparse multinomial

distributions. 41
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Given L observations as in Eq. 3.58, Prop. 3.3.3 shows that the maximum

likelihood estimates of the multinomial parameters π = (π1, ...πK) equal the em-

pirical frequencies of the discrete categories:

π̂ = arg max
π

L∑
l=1

log p(x(l)|π) = (
C1

L
, ...,

CK
L

) (3.61)

When L is not much larger that K, the ML estimate may assign zero probability

to some values and produce misleading predictions. Family of conjugate priors is

useful in these situations.

The Dirichlet distribution (73, 74) is the conjugate prior for the multinomial

exponential family. Adapting the general form of Eq. 3.51, the Dirichlet distri-

bution with hyper-parameters α = (α1, ..., αK) can be written as follows:

p(π|α) =
Γ(Σkαk)∏
k Γ(αk)

K∏
k=1

παk−1
k αk > 0 (3.62)

Note that the Dirichlet distribution’s normalization constant involves a ratio of

gamma functions. By convention, the exponents are defined to equal (αk = 1) so

that the density’s mean has the following simple form:

Eα[πk] =
αk
α0

α0 ,
K∑
k=1

αk (3.63)

Dir(α) is used to denote a Dirichlet density with hyper-parameters α. The hyper-

parameters α controls the density mean, shape, and sparsity of π. Samples can

be drawn from a Dirichlet distribution by normalizing a set of K independent

gamma random variables.

There is sometimes no prior knowledge distinguishing the categories, and the

K hyper-parameters are set symmetrically as αk = α0

K
. The variance of the

multinomial parameters then equals

V arα[πk] =
K − 1

K2(α0 + 1)
αk =

α0

K
(3.64)
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Because the variance is inversely proportional to α0, it is known as the precision

parameter.

When K = 2, the Dirichlet distribution is equivalent to the beta distribution

(74). Denoting the beta density’s two hyper-parmeters by α and β, let π ∼

Beta(α, β) indicate that

p(π|α, β) =
Γ(α + β)

Γ(α) + Γ(β)
πα−1(1− π)β−1 α, β > 0 (3.65)

By convention, samples from the beta density are the probability π ∈ [0, 1] of

the first category, while the two-dimensional Dirichlet distribution is equivalently

expressed in terms of the probability vector (π, 1 − π). As in Eq. 3.62 and Eq.

3.63, the beta density’s hyper-parameters can be interpreted as setting the prior

mean and variance of the binomial parameter π.

In Figure. 3.1, several beta distributions are illustrated. When α = β = 1,

it assigns equal prior probability to all possible binomial parameters π. Larger

hyper-parameters which correspond to smaller variances lead to unimodal pri-

ors concentrated on the chosen mean. To extend beta distribution into K = 3

multinomial categories, we also demonstrate examples of Dirichlet distributions,

using the minimal 2-simplex representation of Eq. 3.59. As with the beta density,

setting αk = 1(α0 = K) defines a uniform prior on the simplex, while larger pre-

cisions lead to unimodal priors. Smaller values of the hyper-parameters (αk < 1)

favor sparse multinomial distributions which assign most of their probability mass

to a subset of the categories.

Consider a set of L observations {x(l)}Ll=1 from a multinomial distribution

p(x|π) with Dirichlet prior p(π|α). The posterior distribution is also Dirichlet via
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conjugacy:

p(π|x(1), ..., x(L), α) ∝ p(π|α)p(x(1), ..., x(L)|π) (3.66)

∝
K∏
k=1

παk+Ck−1
k ∝ Dir(α1 + C1, ..., αK + CK) (3.67)

Ck is the number of observations of category k as in Eq. 3.58. If L is sufficiently

large, the mean of this posterior distribution provides a useful summary statistic

as in Eq. 3.63. αk is equivalent to a number of pseudo-observations of category

k, and the precision α0 is the total size of the pseudo-dataset.

The predictive likelihood of future observation x̄ is calculated using the Dirich-

let normalization constant of Eq. 3.62:

p(x̄ = k|x(1), ..., x(L), α) =
Ck + αk
L+ α0

(3.68)

Ck is the number of times category k was observed in the previous L observations.

These observation counts provide easily updated sufficient statistics which allow

rapid predictive likelihood evaluation. Comparing this prediction to that of Eq.

3.61, the raw frequencies underlying the ML estimate have been smoothed by the

pseudo-counts contributed by the Dirichlet prior.

3.7 Gaussian observations

Consider a continuous-valued random variable x taking values in d-dimensional

Euclidean space X = Rd. A Gaussian or normal distribution (73, 74, 81) with

mean µ and covariance matrix Λ then has the following form:

p(x|µ,Λ) =
1

(2π)d/2|Λ|1/2
exp{−1

2
(x− µ)TΛ−1(x− µ)} (3.69)
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This distribution denoted by N(µ,Λ) is normalizable if and only if Λ is positive

definite. Given L independent Gaussian observations {x(l)}Ll=1, the joint likeli-

hood is

p(x(1), ..., x(L)|µ,Λ) ∝ |Λ|−L/2 exp{−1

2

L∑
l=1

(x(l) − µ)TΛ−1(x(l) − µ)} (3.70)

Gaussian densities define a regular exponential family with canonical parameters

proportional to the Gaussian’s information parameterization (Λ−1,Λ−1µ). The

maximum likelihood estimates of the Gaussian’s parameters based on the dataset

are the sample mean and covariance:

µ̂ =
1

L

L∑
l=1

x(l) Λ̂ =
1

L

L∑
l=1

(x(l) − µ̂)(x(l) − µ̂)T (3.71)

The sample mean and covariance provide sufficient statistics.

Any distribution satisfying certain spherical symmetries has a representation

as a continuous mixture of Gaussian densities for some prior on that Gaussian’s

covariance matrix. The conjugate prior for the covariance matrix of a Gaussian

distribution with known mean is the inverse-Wishart distribution which is a mul-

tivariate generalization of the scaled inverse-χ2 density (74). The d-dimensional

inverse-Wishart density with covariance parameter ∆ and ν degrees of freedom

equals

p(Λ|ν,∆) ∝ |Λ|−( ν+d+1
2

) exp{−1

2
tr(ν∆Λ−1)} (3.72)

This density is denoted by W(ν,∆). An inverse-Wishart prior is proper when

ν > d and skewed towards larger covariances (74). Its mean and mode equal

Eν [Λ] =
ν

ν − d− 1
∆ ν > d+ 1 (3.73)

arg max
Λ

W(Λ; ν,∆) =
ν

ν + d+ 1
∆ (3.74)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Normal-inverse-Wishart distributions. (a) Joint probability den-

sity of a scalar normal-inverse-χ2 distribution NW(0.1, 0, 8, 1). (b) Covariance el-

lipses corresponding to ten samples from a 2D normal-inverse-Wishart distribution

NW(0.1, 0, 8, I2). (c)-(d) Density and samples of NW(0.3, 0, 4, 1). (e)-(f) Density

and samples of NW(2, 0, 4, 1).
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The degrees of freedom ν, which can be viewed as a precision parameter, is

interpreted as the size of a pseudo-dataset with sample covariance ∆.

If a multivariate Gaussian’s mean and covariance are both unknown, the

normal-inverse-Wishard distribution provides an appropriate conjugate prior. The

covariance matrix is assigned an inverse-Wishard prior Λ ∼W(ν,∆) following Eq.

3.72. Conditioned on Λ, the mean µ ∼ N(ϑ,Λ/κ). ϑ is the expected mean, for

which there are κ pseudo-observations on the scale of observations x ∼ N(µ,Λ).

The joint prior distribution denoted by NW(κ, ϑ, ν,Λ) takes the following form:

p(µ,Λ|κ, ϑ, ν,∆) ∝ |Λ|−( ν+d
2

+1) exp{−1

2
tr(ν∆Λ−1)− κ

2
(µ− ϑ)TΛ−1(µ− ϑ)}

(3.75)

Fig. 3.2 illustrates three sets of normal-inverse-χ2 density when d = 1. Note

that the mean and variance are dependent, so there is greater uncertainty in the

mean value for larger underlying variances. This scaling is often, but not always,

appropriate, and is necessary if conjugacy is desired. Fig. 3.2 also shows the

three sets of ten Gaussian distributions drawn from the corresponding priors. As

was shown in these figures, normal-inverse-Wishard distributions are a lot like

Gaussian distributions, except that whereas the Gaussian distributions go from

−∞ to ∞, normal-inverse-Wishard distributions go from 0 to ∞.

Consider a set of L observations {x(l)}Ll=1 from a multivariate Gaussian dis-

tribution N(µ,Λ) with normal-inverse-Wishart prior NW(κ, ϑ, ν,∆). The poste-

rior distribution p(µ,Λ|x(1), ..., x(l), κ, ϑ, ν,∆) is also normal-inverse-Wishart and

compactly described by a set of updated hyper-parameters NW(κ̄, ϑ̄, ν̄, ∆̄) via

conjugacy. Through multiplication of Eq. 3.70 and Eq. 3.75 and manipulation
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of the quadratic form in Eq. 3.75, these posterior hyper-parameters equal:

κ̄ϑ̄ = κϑ+
L∑
l=1

x(l) (3.76)

κ̄ = κ+ L (3.77)

ν̄∆̄ = ν∆ +
L∑
l=1

x(l)x(l)T + κϑϑT − κ̄ϑ̄ϑ̄T (3.78)

ν̄ = ν + L (3.79)

(3.80)

By caching the observations’ sum and using Cholesky decompositions (82, 83)to

calculate the sum of observation outer products, we can efficiently compute these

posterior parameters.

The predictive likelihood of a new observation x̄ is multivariate Student-t with

(ν̄ − d+ 1) degrees of freedom by integrating over the parameters of the normal-

inverse-Wishart posterior distribution. Assuming ν̄ > (d + 1), this posterior

density has finite covariance, and can be approximated by a moment-matched

Gaussian:

p(x̄|x(1), ...x(L), κ, ϑ, ν,∆) ≈ N(x̄; ϑ̄,
(κ̄+ 1)ν̄

κ̄(ν̄ − d− 1)
∆̄) (3.81)

The predictive likelihood depends on regularized estimates of the mean and co-

variance of previous observations. As illustrated in Fig. 3.3, although Student-t

distributions have heavier tails than Gaussian, the KL divergence plot in (c)

shows that the Gaussian approximation is accurate unless ν̄ is very small.

3.8 Linear observations

The normal linear regression model is one in which the observations (responses)

yi ∈ Rd can be described as a linear combination of a set of known regressors

48



www.manaraa.com

3.8 Linear observations

(a) (b) (c)

Figure 3.3: Approximation of Student-t predictive distributions by a Gaussian

with moments matched as in Eq. 3.81. One-dimensional Gaussian and heavier-

tailed Student-t densities are compared with ν = 4 in (a) and ν = 10 in (b) degrees

of freedom. For moderate ν, the Gaussian approximation becomes very accurate

as shown in (c) plotted KL divergence depending on ν.

xi ∈ Rn with errors accounted for by additive Gaussian noise (84):

yi = xi1a1 + · · ·+ xinan + ei ei ∼ N(0,Λ) (3.82)

By Combining N response vectors into a matrix Y = [y1...yN ], the regressors into

a matrix X = [x1...xN ], and the noise terms into E = [e1...eN ] we can compactly

write:

Y = AX + E (3.83)

where A = [a1...aN ] is the design matrix.

The conjugate prior on the set of design matrix A and the noise covariance Λ is

the matrix normal-inverse-Wishart prior. This distribution places a conditionally

matrix normal prior on A given Λ:

p(A|Λ,M,K) =
|K| d2
|2πΛ|

exp{−1

2
tr((A−M)TΛ−1(A−M)K)} (3.84)
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and an inverse-Wishart prior on Λ

Λ ∼W(ν,∆) (3.85)

Consider a set of observations D = {X, Y }, the posterior distribution of

{A,Λ} can be decomposed as the product of posteriorA as MN(A;SyxS
−1
xx ,Λ, Sxx)

with Sxx = XXT + K, Syx = Y XT + MK, and Syy = Y Y T + MKMT and the

marginal posterior of Λ as W(ν +N,∆ + Sy|x) where Sy|x = Syy − SyxS−1
xx S

T
yx.

3.9 Probabilistic graphical models

Probabilistic graphical models (85, 86, 87, 88, 89) as a powerful, flexible frame-

work are motivated from several perspectives. Large collections of random vari-

ables are involved in many practical applications. This makes direct application

of the classic exponential families and their priors become typically infeasible.

For example, a generic high-dimensional discrete model of the joint distribution

of 100 binary variables has 2100 ≈ 1030 parameters. Even if this density could be

stored and manipulated, reliable parameter estimation would require an unreal-

istically massive computation and dataset. Probabilistic graphical models allow

us to decompose multivariate, joint distributions into a set of local interactions

among small subsets of variables. These local relationships produce conditional

independencies which lead to efficient inference and learning algorithms. Fur-

thermore, probabilistic graphical models are also a general class of probabilistic

models that can be used to infer latent variables from impoverished data. Latent

variables in cognitive science can refer to any deeper laying causes that are not

directly observable to us, such as attentional states, knowledge representations,

contents of memory, and brain states.
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x2

x4

x3

x5

x1

(a)

x3

x2

x1

(b)

x2 x3
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(c)

x1 x2

x3

(d)

Figure 3.4: Four examples of Bayesian networks.

A graphical model allows us to specify certain local statistical dependencies

between the random variables including both the latent variables and observed

data as well as develop efficient inference and learning techniques such as belief

propagation (87), and for advances in variational methods (77). Many classical

models such as the hidden Markov model (HMM) (90) can be formulated within

the graphical model framework. The inference and learning algorithms developed

specifically for these models such as the forward-backward algorithm (90), Viterbi

decoding (91), and Kalman filtering (92) can be derived as special cases of generic

graphical model inference and learning algorithms.

There are different families of graphical models, including directed Bayesian

networks, undirected Markov random fields, and factor graphs. We will focus on

directed graphical models, in which the statistical dependency between random

variables is based on directional relationships. These models are also known as

Bayesian networks and belief networks.

3.9.1 Graph theory review

We briefly review some definitions from graph theory in order to describing graph-

ical models subsequently. A graph G = (ν, ξ) consists of a set of nodes or vertices

ν, and a corresponding set of edges ξ. Each edge (i, j) ∈ ξ connects two distinct
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nodes i, j ∈ ν. For directed graphs, and edge (i, j) connects a parent vertex i to

its child j, and is pictorially represented by and arrow pointing from i to j (see

Figure 3.4). The set of all parents Γ(j) of node j is then given by

Γ(j) , {i ∈ ν|(i, j) ∈ ξ} (3.86)

Given a graph G = (ν, ξ), graphical models represent probability distributions

by associating each node i ∈ ν with a random variable xi ∈ Xi. The structure of

the joint distribution p(x), where x , {xi|i ∈ ν} takes values in the joint sample

space X = Xi × · · · ×XN , can be decomposed based on the corresponding edges.

3.9.2 Directed Bayesian networks

Bayesian networks associate each node i ∈ ν with a random variable xi, and

decompose p(x) via the conditional density of each child node i given its parents

Γ(i):

p(x) =
∏
i∈ν

p(xi|xΓ(i)) (3.87)

For nodes i without parents (Γ(i) = ∅), we define p(xi|xΓ(i)) = p(xi). This

factorization is consistent whenever G is a directed acyclic graph, so that its

edges specify a valid partial ordering of the random variables (87, 93, 94). For

example, the directed graph of Figure 3.4 (a) implies the following conditional

densities:

p(x) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x3) (3.88)

Bayesian networks effectively define a causal generative process, beginning with

nodes without parents and proceeding from parent to child throughout the graph.

The Markov properties of directed Bayesian networks are that a random vari-

able xi is conditionally independent of the remaining process given its parents
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xΓ(i), children xj|i ∈ Γ(i), and its children’s parents. Exponential families usu-

ally provide convenient parameterizations of the conditional densities composing

a Bayesian network. For small network, it is relatively easy to visually read off

the independence relationships from a network. Besides, one can also use the

joint distribution to derive all the conditional independence relations. For exam-

ple, consider the graphical model in Figure 3.4. To see whether x2 and x3 are

independent conditional on x1 such that p(x2, x3|x1) = p(x2|x1)p(x3|x1), we can

use the product rule to re-write the conditional probability p(x2, x3|x1) into its

joint distribution form, and replace the joint distribution in the numerator by the

factorization that the network implies:

p(x2, x3|x1) =
p(x2, x3, x1)

p(x1)
(3.89)

=
p(x2|x1)p(x3|x1)p(x1)

p(x1)
(3.90)

= p(x2|x1)p(x3|x1) (3.91)

Therefore, the conditional independence holds in this case.

3.9.3 Exchangeability via graphical models

Assuming the distribution Q has a parameterized density q(·|λ), the de Finetti

theorem in Corollary 3.1.1 implies the following hierarchical Bayesian model:

p(x1, · · · , xn, θ|λ) = q(θ|λ)
n∏
i=1

p(xi|θ) (3.92)

This equation has a directed graphical representation based on Equation 3.87,

which is shown in Figure 3.5. This figure contains both an explicit representation

of the graphical model, and an equivalent representation using plate notation to

compactly represent the n observations xi. It can be directly proved by using the

Markov blanket concept that this set of random variables is yielded conditionally

i.i.d. given θ from the graphical model.
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ө

x1

λ

x2 x3 xn
. . .

ө

λ

xi
                 n

Figure 3.5: Graphical representation of the hierarchical Bayesian model of n

exchangeable random variables implied by de Finetti’s theorem. Each observation

is an independent sample from a density parameterized by θ, which itself has a

prior distribution with hyper-parameter λ. Left: An explicit representation of

the graphical model. Right: A compact representation using a plate to denote n

replicates of the observations xi.

3.9.4 Hidden Markov models

Directed graphical models provide a unified theoretical framework for a family

of hidden Markov models (HMMs) which are widely used to model temporal

stochastic processes (90, 95, 96, 97). Let y = {yt}T−1
t=0 denote observations of

a temporal process collected at T discrete time points. We assume that each

observation yt is independently sampled conditioned on an underlying hidden

state xt. If we further assume that these states x = {xt}T−1
t=0 evolve according to

a first-order temporal Markov process, the joint distribution equals

p(x, y) = p(x0)p(y0|x0)
T−1∏
t=1

p(xt|xt−1)p(yt|xt) (3.93)

Figure 3.7 shows a directed graphical representation of this density. In later

chapters, we extend this model to develop methods for modeling eye movements.
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Let πj denote the state-specific transition distribution for state j. Then, the

Markovian structure on the state sequence dictates that for all t > 1

xt|xt−1 ∼ πxt−1 (3.94)

The state at the first time step is distributed according to an initial transition

distribution π0:

x1 ∼ π0 (3.95)

Given the state xt, the observation yt is conditionally independent of the ob-

servations and states at other time steps. The observation is simply generated

as

yt|xt ∼ F (θxt) (3.96)

for an indexed family of distributions F (·) where θi are the emission parameters

for state i, assuming there exists a density associated with F (·).

Models equivalent to HMMs were independently developed and widely used

in different domains, such as speech recognition and control theories (90, 97).

All these disparate approaches can be unified via graphical models. Furthermore,

graphical models provide possibilities for advances in inference and learning meth-

ods to be transferred between various domains (86, 93, 98).

3.9.5 Forward-backward algorithm

As a classical model, hidden Markov model (HMM) (90) has hand-tailored learn-

ing algorithms that can be described within the more general framework of

inference on a graphical model. The forward-backward algorithm provides an

efficient message-passing scheme for computing node marginals of interest for

problems of filtering p(xn|y1, ..., yn), prediction p(xn+m|y1, ..., yn), and smoothing
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Figure 3.6: Directed graphical model of a hidden Markov model (HMM) for T = 7

samples of a temporal process. The hidden states xt capture dependencies among

the observations yt.

p(xn|y1, ..., yN), N > n. This classical algorithm has straightforward connections

with the belief propagation algorithm. We define a set of forward messages:

αn(xn) , p(y1, ..., yn, xn) (3.97)

and backward messages:

βn(xn) , p(yn+1, ..., yN |xn) (3.98)

For the problem of filtering:

p(xn|y1, ..., yn) =
p(xn, y1, ..., yn)

p(y1, ..., yn)
(3.99)

=
αn(xn)∑
x αn(xn)

(3.100)

For the problem of prediction:

p(xn+m|y1, ..., yn) =
p(xn+m, y1, ..., yn)

p(y1, ..., yn)
(3.101)

=

∑
xn+m−1

p(xn+m|xn+m−1) · · ·
∑

xn
p(xn+1|xn)αn(xn)∑

x αn(xn)
(3.102)
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which is equivalent to propagating the forward message without incorporating

the missing observation: yn+1, ..., yn+m. The problem of smoothing:

p(xn|y1, ..., yN) =
p(y1, ..., yN |xn)p(xn)

p(y1, ..., yN)
(3.103)

=
αn(xn)βn(xn)∑
x αm(x)βm(x)

for ∀m (3.104)

Based on the conditional independencies implied by the graph of Figure 3.7,

we can derive the recursions for these forward and backward messages, which are

utilized by the inference algorithms in the thesis. For the forward message,

αn+1(xn+1) = p(yn+1|xn+1)p(xn+1, y1, ..., yn) (3.105)

= p(yn+1|xn+1)
∑
xn

p(xn+1|xn)αn(xn) (3.106)

The backward recursion is derived as

βn(xn) =
∑
xn+1

p(yn+1, ..., yN , xn+1|xn) (3.107)

=
∑
xn+1

p(yn+1|xn+1)p(xn+1|xn)βn+1(xn+1) (3.108)

The forward initial condition and the backward final condition are given by:

α1(x1) = p(y1, x1) = p(y1|x1)π0(x1) (3.109)

βN(xN) = 1 (3.110)

The forward-backward algorithm can be derived as a special case of the belief

propagation by converting the directed graph to its undirected form.

3.9.6 Viterbi Algorithm

Given a set of HMM parameters, the Viterbi algorithm (91) provides an efficient

dynamic programming approach to computing the most likely state sequence to
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Compute the MAP hidden Markov model state sequence x̂1, ..., x̂N

as follows:

1. Initialize minimum path sum to state x1 = k for each k ∈

{1, ..., K}:

S1(x1 = k) = − log π0(x1 = k)− log p(y1|x1 = k)

2. For n = 2, ..., N and for each k ∈ {1, ..., K}, calculate the

minimum path sum to state xn = k:

Sn(xn = k) = − log p(yn|xn = k) + min
xn−1

{Sn−1(xn−1 − log p(xn = k|xn−1))}

and let

x∗n−1(xn) = arg min
xn−1

{Sn−1(xn−1)− log p(xn − k|xn−1)}

3. Compute

min
x1,...,xN

− log p(x1, ..., xN |y1, ..., yN) = min
xN

SN(xN)

and set

x̂N = arg min
xN

SN(xN)

4. Iteratively set, for n ∈ {N − 1, ..., 1}

x̂n = x∗n(x̂n+1)

Table 3.1: Algorithm 1. Viterbi hidden Markov model decoding.
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have generated an observation sequence y1, ..., yN :

x̂ = max
x1,...,xN

π0(x1)p(y1|x1)
N∏
n=2

p(xn|xn−1)p(yn|xn) (3.111)

= min
x1,...,xN

[− log π0(x1)− log p(y1|x1) +
N∑
n=2

− log p(xn|xn−1)− log p(yn|xn)]

(3.112)

The Viterbi algorithm works on the dynamic programming principle that the

minimum cost path to xn = k is equivalent to the minimum cost path to node

xn−1 plus the cost of a transition from xn−1 to xn = k, which is incurred by

observation yn given xn = k.

Viterbi decoding reduces the computation complexity to O(K2N) instead of

the brute force O(KN). Algebraically, the Viterbi algorithm is closely related

to the max-product (min-sum) algorithm that operates by distributing the max-

imization (minimization) operators over the elements of the product (sum) in

Equation 3.111. It is worth to note that choosing the MAP sequence is not

necessarily equivalent to choosing the maximum marginal independently at each

node:

x̂ = max p(xn|y1, ..., yN) (3.113)

Actually, such a maximum marginal sequence may not even be a feasible sequence

for the HMM.

3.10 Inference and Learning Methods

In order to make efficient estimation on these complex models, we need approxi-

mated methods of learning and inference, instead of exact methods which become

difficult to carry out by complete enumeration of all hypotheses and evaluation
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of their probabilities (99). Guidance comes from how processing the dynamics in

the brain, such as belief propagation, expectation-maximization (EM), Markov

chain Monte Carlo (MCMC), and sequential Monte Carlo (particle filtering). In

particular, sequential Monte Carlo methods are used to simulate human reasoning

process with great success.

Inference and learning of graphical models can be posed on the basis of some

canonical computational tasks in many cases. We summarize the random vari-

ables composing the graphical models into four sets for the sake of discussion:

observations y, latent variables x, parameter θ, and hyper-parameter λ.

3.10.1 Inference

Assuming the graph’s parameters θ are fixed and known, the posterior distribu-

tion p(x|y, θ) fully captures available information about the hidden variables x.

For most realistic graphs the joint sample space X is too large to characterize

in exact methods. So approximate methods to infer statistics summarizing this

posterior density is necessary.

The joint density p(x|y, θ) can be effectively summarized by the following

posterior marginal distribution:

p(xi|y, θ) =

∫
XV\i

p(x|y, θ)dxV\i i ∈ V (3.114)

Here, V\i denotes all nodes except xi. The mean of this conditional density

is the Bayes’ least sequares estimate (81, 100). The mode of this conditional

density is the maximizer of the posterior marginals (MPM) (101) by minimizing

the expected number of mis-classified variables. The variance or entropy of this

conditional density measure the posterior uncertainty in these estimates (87, 102,

103).
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An alternative method is to infer hidden variables via a global MAP estimate:

x̂ = arg max
x

p(x|y, θ) (3.115)

It shows that when observations are noisy or ambiguous, MAP estimation is often

less robust than the MPM estimation (101).

3.10.2 Learning

Given observations y a straightforward parameter learning method is to determine

a single MAP parameter estimate:

θ̂ = arg max
θ
p(θ|y, λ) (3.116)

= arg max
θ
p(θ|λ)

∫
X

p(x, y|θ)dx (3.117)

The difficult part of this optimization is the marginalization over hidden variables

x. Inference problem analogous to the posterior marginal computation of Eq.

3.114 is also required when learning with hidden variables.

When the parameters themselves are of interest, characterizations of their

posterior uncertainty are useful. Given some decomposition θ = {θa|a ∈ A} of

the joint parameter space, the posterior marginal distribution of these parameters,

and the corresponding hidden variables, equal

p(θa|y, λ) =

∫
X

∫
ΘA\a

p(x|y, θ)p(θ|y, λ)dθA\adx a ∈ A (3.118)

p(xi|y, λ) =

∫
Θ

∫
Xν\i

p(x|y, θ)p(θ|y, λ)dxν\idθ i ∈ V (3.119)

Here, θa parameterizes an individual potential function in undirected graphs, or

the conditional distribution of a single variable in a directed graphs. Integrating

over all parameters and hidden variables, the observations’ marginal likelihood
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can be recovered:

p(y|λ) =

∫
X

∫
Θ

p(x, y|θ)p(θ|λ)dθdx (3.120)

The marginal likelihood is used in Bayesian approaches to model selection, clas-

sification problems to determine the most likely explanation of the given obser-

vations, and empirical Bayesian estimate of the prior distribution.

Exact inference and learning for many graphical models arising in practice

is computationally intractable. For example, given N variables of the posterior

marginal computation, each taking one of K discrete states, this expression leads

to a summation containing KN−1 terms, which for arbitrary graphs is NP hard

(99). Optimization to compute the MAP is equally challenging (104). A high-

dimensional integration of continuous X is usually also intractable. There are

two other principle class of estimation methods providing approximate solutions

to learning and inference tasks, which are variational methods (77, 102, 105) and

Monte Carlo methods. We will focus on Monte Carlo methods which explore

posterior distributions via efficient numerical simulations.

3.10.3 Monte Carlo Integration

The success of Monte Carlo methods is due to that the aim of inference is not

always to find the most probable explanation for the observed human behav-

iors, which is essentially the peak of a probability distribution. While this most

probable hypothesis may be of interest, and some inference methods do locate it,

in cognition modeling it is the whole distribution that is of interest. The most

probable outcome from a human is often not a typical outcome from that human.

Similarly, the most probable hypothesis given some observed human behaviors

may be atypical of the whole set of reasonably-plausible hypotheses.

62



www.manaraa.com

3.10 Inference and Learning Methods

Monte Carlo methods use random samples to simulate probabilistic models

(74, 106, 107). Although they are guaranteed to yield arbitrarily precise estimates

with sufficient computation, efficient algorithm design is necessary in practice in

order to obtain reliable, accurate estimates at a tractable computational cost.

Let p(x) denote some target density with sample space X. The expected value

Ep[f(x)] of an appropriately chosen function can be used to express various infer-

ence tasks such as the calculation of marginal densities and sufficient statistics.

Suppose that p(x) is difficult to analyze explicitly, but that we can draw L inde-

pendent samples {x(l)}Ll=1 from it. The desired statistic can be approximated as

follows (107):

Ep[f(x)] =

∫
X

f(x)p(x)dx (3.121)

≈ 1

L

L∑
l=1

f(x(l)) = Ep̃[f(x)] (3.122)

Here, p̃ is the empirical density corresponding to the L samples. This estimate is

unbiased, and converges to Ep[f(x)] almost surely as L → ∞. Furthermore, its

error is asymptotically Gaussian, with variance determined by Ep[f 2(x)] rather

than the dimensionality of the sample space (107).

3.10.4 Kernel Density Estimation

In some cases of Monte Carlo methods, an explicit estimate p̂(x) is desired in-

stead of a summary statistic as in Eq. 3.121. The advantage of non-parametric

density estimators is that they allow the complexity of the estimated density to

grow as more samples are observed. Given L independent samples {x(l)}Ll=1, the

corresponding kernel density estimate can be written as follows:

p̂(x) =
L∑
l=1

ω(l)N(x;x(l),Λ) (3.123)
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This estimator uses a Gaussian kernel function to smooth the raw sample set by

placing more probability mass in regions with many samples. Although there

are other kernels are possible instead of a Gaussian, we mainly use it in this

thesis. If these samples are drawn from the target density p(x), the weights are

set uniformly to ω(l) = 1/L. The kernel density estimate of Eq. 3.123 depends on

the bandwidth Λ of the Gaussian kernel function. There is extensive literature

on methods for automatic bandwidth selection ranging from the simple “rule of

thumb” method to more sophisticated cross-validation schemes (108).

3.10.5 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm constructs an ergodic Markov chain by defin-

ing a valid proposal distribution q(·|·) and evaluation of the target distribution

p up to a normalization constant. Since we are able to evaluate p(x), the key

is how to sample from this distribution. The proposal distribution must satisfy

some weak conditions (107).

Given a previous sample x(t−1):

1. Sample x′ ∼ q(x′|x(t−1)).

2. Determine the acceptance probability:

ρ(x′|x(t−1)) = min{ p(x′)q(x(t−1)|x′)
p(x(t−1)q(x′|x(t−1)))

, 1}

3. Sample

x(t) ∼ ρ(x′|x(t−1))δx′ + (1− ρ(x′|x(t−1)))δx(t−1) ,

where δx is a Dirac mass at x.

Table 3.2: Algorithm 2. Metropolis-Hastings algorithm.
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As long as p(x(0)) > 0 the chain defined in Algorithm 3.3 will have p(x(t)) > 0

for all t. So, the acceptance probability ρ(y|x) which is defined only when p(x) > 0

is valid. The detailed balance condition is also necessary for the Markov chain

defined by the Metropolis-Hastings algorithm.

Proposition 3.10.1. Let T (xa|xb) = p(xn+1 = xa|xn = xb) be the transition

distribution for a given Markov chain. If T (xa|xb) satisfies detailed balance:

T (xa|xb)πxb = T (xb|xa)πxa (3.124)

then the chain defined by this transition distribution has stationary distribution

π. A Markov chain satisfying detailed balance is said to be reversible with respect

to π.

It is straightforward to show that the transition distribution defined by Algo-

rithm 3.3 satisfies detailed balance. According to the transition distribution, the

sampling chain transitions from xa to a sample xb ∼ q(xb|xa) with probability

ρ(xb|xa) and stay at xa otherwise. Thus the transition distribution is a weighted

mixture of the proposal distribution and a Dirac mass at xa:

T (xb|xa) = ρ(xb|xa)q(xb|xa) + (1−
∫
ρ(z|xa)q(z|xa)dz)δxa (3.125)

We can analyze each term of the transition distribution separately to check the

detailed balance condition. Thus the chain generated by the Metropolis-Hastings

algorithm also define a Markov chain with π a stationary distribution.

To show that the Markov chain converges to π which is the unique invariant

distribution for this chain and this distribution is reachable from all initial states,

we invoke some mild conditions under which the chain is both aperiodic and

irreducible (74, 107). A sufficient condition for the Metropolis-Hastings Markov
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Figure 3.7: Demonstration of Metropolis-Hastings algorithm. 500 samples were

drawn from the Cauchy distribution. The upper panel shows the theoretical density

in the dashed red line and the histogram shows the distribution of the samples.

The lower panel shows the sequence of samples of one chain.

chain to be aperiodic is for events x(t) = x(t−1) to occur with some positive

probability. That is

P [π(x(t−1))q(y|x(t−1)) ≤ π(y)q(x(t−1)|y)] < 1 (3.126)

Furthermore, if

q(y|x) > 0 ∀(x, y) ∈ X× X (3.127)

then the Metropolis-Hastings Markov chain is irreducible. Thus, any Metropolis-
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Hastings algorithm defined with a proposal distribution that satisfies the above

conditions will eventually yield samples from the stationary distribution π and

lim
T→∞

1

T

T∑
t=1

f(x(t)) =

∫
X

f(x)π(x)dx (3.128)

The rate of convergence to the stationary distribution is extensively discussed

in (74, 106). Generally, the burn-in period is challenging to quantify except by

conservative bounds. Convergence can be affected by the initialization of the

Markov chain to a great extent, so it is common to run multiple chains from

different initializations in practice. Multi-modal target distributions with low

valleys between the modes can be problematic by causing poorly mixing chains

to stay in one region of the state space for long periods of time. It is also important

to cleverly engineer proposal distribution.

3.10.6 Gibbs Sampling

Gibbs sampler, which is a special case of Metropolis-Hastings algorithm, is partic-

ularly well suited to the problems of which state spaces have internal topological

structure in terms of probabilistic dependence among variables (101, 109, 110).

Let x = (x1, ..., xN) denote decomposition of the joint sample space into N vari-

ables. Gibbs sampler assume that it is tractable to sample from the conditional

distribution of one of these variable given the other (N − 1). At iteration t, a

particular variable i(t) is selected for re-sampling and the rest are held constant:

x
(t)
i ∼ p(xi|x(t−1)

j , j 6= i) i = i(t) (3.129)

x
(t)
j = x

(t−1)
j j 6= i(t) (3.130)

If these sampling updates are iterated so that all variables are re-sampled in-

finitely, mild conditions ensure x(t) will converge in distribution to a sample from

p(x) as t→∞ (107, 111).
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Although there exist polynomial bounds on the time complexity to mix to

the target equilibrium distribution (107, 111), it can be difficult to guarantee

or diagnose convergence in high-dimensional models (106). Besides the practical

techniques to improve the rate of convergence discussed in Metropolis-Hastings

algorithm, one can consider blocked Gibbs samplers or randomly permuting the

order in which variables are re-sampled (107, 111, 112).

1. Initialize x0,1:n

2. for i = 0 to N − 1:

- Sample x
(i+1)
1 ∼ p(x1|x(i)

2 , x
(i)
3 , ..., x

(i)
n )

- Sample x
(i+1)
2 ∼ p(x2|x(i+1)

1 , x
(i)
3 , ..., x

(i)
n )

...

- Sample x
(i+1)
j ∼ p(xj|x(i+1)

1 , ..., x
(i+1)
j−1 , x

(i)
j+1, ..., x

(i)
n )

...

- Sample x
(i+1)
n ∼ p(xn|x(i+1)

1 , x
(i+1)
2 , ..., x

(i+1)
n−1 )

Table 3.3: Algorithm 3. Gibbs sampler.

The Gibbs sampler’s use of partitioned state spaces is ideally suited for infer-

ence in graphical models (87, 101, 102, 109). We focus on using Gibbs sam-

pling to estimate posterior distributions for directed graphical model param-

eters. Hidden variables are sampled given fixed parameters. Conditioned on

these hidden variables, conjugate priors p(θ|λ) typically allow individual param-

eters to be tractably re-sampled (94, 110, 113). Statistics of the joint posterior

p(x, θ|y, λ) can be estimated by alternatively sampling x(t) ∼ p(x|θ(t−1), y) and

θ(t) ∼ p(θ|x(t), y, λ).
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Elicitation of Perceptual and

Conceptual Tacit Knowledge

We designed and conducted an eye tracking experiment to investigate the con-

ceptual and perceptual processing involved in subjects’ medical image inspection

(11). Preliminary statistical analysis of performance (in terms of time spent and

diagnostic correctness), eye tracking, as well as verbal narrative data indicates

significant difference between expertise-specific groups in those aspects.

4.1 Subjects

Subjects recruited for the eye tracking experiment belong to three groups based

on their dermatology training level including eleven board-certified dermatolo-

gists (attending physicians), four dermatologists in training (residents) and thir-

teen undergraduate students who were lay people (novices). We also recruited

physician assistant students who served as ”trainees” in order to motivate der-
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Figure 4.1: Scatterplots of time duration versus diagnostic difficulty level of

each image. Each green point denotes the time duration of each subject on the

corresponding image. The red line is the linear regression line in each expertise-

specific dataset. The blue line represents the medians. The top panel shows 11

attendings’ durations on 50 images. The middle panel shows 4 residents’ durations

on 50 images. The bottom panel shows 13 novices’ duration on 43 images. Some

jitter has been added on the vertical axis to reduce overlap and facilitate display.70
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Figure 4.2: Scatterplot of mean time durations of attending group versus resident

group on all 50 images.

matologists to verbalize their diagnostic reasoning using the Master-Apprentice

scenario (114), which is known to be effective for eliciting tacit knowledge.

4.2 Apparatus

A SMI (Senso-Motoric Instruments) eye tracking apparatus was applied to display

the stimuli at a resolution of 1680x1050 pixels for the collection of eye movement

data and recording of verbal descriptions. The eye tracker was running at 50

Hz sampling rate and with reported accuracy of 0.5o visual angle. The subjects

viewed the medical images binocularly at a distance of about 60 cm. The exper-

iment was conducted in an eye tracking laboratory with ambient light.
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4.3 Materials and Procedure

A set of 50 dermatological images, each representing a different diagnosis, was

selected for the study. These images were collected from the database of Logical

Images Inc. and our collaborating author, Cara Calvilli MD. These images were

presented to subjects on a monitor with 1280×1024 display. Medical professionals

were instructed to examine and describe each image to the students while working

towards diagnosis, as if teaching. Viewing time limit on each image is 90 sec. The

professional groups (both attendings and residents) were instructed not only to

view the medical images and work onto a diagnosis, but also to describe what

they saw as well as their thought processes leading them to the diagnosis to the

student sitting besides them as if they were in a training process, according to a

modified Master-Apprentice scenario. The instruction is as follows:

Over the next hour we will show you 50 images representing a range of der-

matological diagnoses. We would like you to examine each image and describe it

to the trainee sitting next to you. When you have finished describing it, please

offer your diagnosis or differential diagnosis of the projected disorder. Please de-

scribe the image as if you were teaching the trainee to make a diagnosis based

on the image. It will be important to describe the image verbally rather than by

pointing to areas of the image. Even if you reach a diagnosis quickly please de-

scribe the image characteristics that have allowed you to reach that diagnosis. We

have asked the trainee to simply listen rather than interact or ask questions. We

will be recording your eye movements and verbal descriptions as you examine the

images. Each image will be shown for one and a half minutes and will advance

automatically, although you can advance them using the space bar if you would

like to work at a faster pace. Try to work at a pace that is natural to you and

don’t be concerned about whether the diagnosis is correct. We will be happy to
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review any of the diagnoses with you at the end of the study if you would like.

The novice group was instructed to describe the disease to a physician as

detailed as possible in order to facilitate the diagnosis. Over the next hour, we

will show you 42 medical images. The instruction for the novice group is as

follows:

We like to understand how people look at bio medical images. We would

like you to examine each image and describe it as if you are describing it over

the phone to a dermatologist who cannot see the images but has to diagnose it.

When you finish describing an image, please say ’Next’ and we will proceed to

the next image. Try to work at a pace that is natural to you, and try not to ask

any questions during the experiment. We will be recording your eye movements

and verbal descriptions as you examine the images. First we will need to do a

calibration of your eye positions on the monitor. You will see a series of circles

with a black dot in the center. Simply look at the center until the circle moves to

a different position on the screen. We will repeat this calibration after each set of

6 images.

Both eye movements and verbal narratives were recorded for the viewing du-

rations controlled by each subject. The experiment started with a 12-point cali-

bration and the calibration was validated after every 10 images. As long as the

deviations of the subjects’ fixations from the target points are no more than 1

degree visual angle, we accept it. The audio recordings of the verbal narratives

from the dermatologists were transcribed and annotated, as described below.

4.4 Performance Analysis

In order to compare and evaluate the performances of our three expertise-specific

groups, we measured their time durations and diagnostic correctness scores on
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Figure 4.3: Scatterplots of diagnostic correctness scores versus diagnostic diffi-

culty level of each image. The criterion includes identification of primary morphol-

ogy, differential diagnosis, and final diagnosis. The scores range from 0 to 3, and

3 means all the three criterion are correct. Each green point denotes the diagnosis

correctness of each subject on the corresponding image. The red line is the linear

regression line in each expertise-specific dataset. The top panel shows 11 attend-

ings’ durations on 50 images. The bottom panel shows 4 residents’ durations on

50 images. There is no diagnosis for novice group. Some jitter has been added on

the vertical axis to facilitate display.
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each image.

We first evaluate the correlations between the diagnostic difficulty level of

each image and the subjects’ time durations for each expertise-specific group sep-

arately. Figure 4.1 shows that there are significant positive correlations between

the median time durations and the diagnostic difficulty levels for both attending

group and resident group (for attending group Spearman’s ρ = 0.68, p < 0.001,

and for resident group ρ = 0.73, p < 0.001). This suggests that both attending

and resident groups tend to spend longer time on more difficult cases and less

time on easier cases, as one would predict.

However, the novice group’s time durations are not correlated with the diag-

nostic difficulty levels. There are alternative possible explanation for this lack of

correlation. The first is that the novice group lacks medical knowledge, so would

be expected to be less discriminating in recognizing the diagnostic difficulty. The

second is because they received different task instructions than the professional

groups in our experimental design. While professionals are instructed to describe

the image to a medical student during their working towards a diagnosis, novices

are instructed to describe the image to a doctor to facilitate diagnosis.

The above discussion considers only the correlation between time durations

and images for each expertise-specific group, rather than the time durations spent

on the same image made by both attending group and resident group. In Figure

4.2, there is significant positive time duration correlation between attending group

and resident group (r(49) = 0.61, p < .001). This finding confirms that both

groups tend to spend longer time on some images and less time on others. A

closer examination of Figure 4.2 reveals that attending group tends to spend a

longer time than resident group on the same image. This suggests that attending

group tends to be more thorough on examining images or more careful to render

diagnosis hypotheses.
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Figure 4.4: Scatterplot of diagnosis correctness scores of attending group versus

resident group on all 50 images.

We recruited three additional dermatologists to evaluate the diagnostic cor-

rectness based on the transcribed verbal narratives. The criterion includes iden-

tification of primary morphology, differential diagnosis, and final diagnosis. The

scores range from 0 to 3, and 3 means all the three criterion are correct. In Fig-

ure 4.4, the correctness scores decrease for both attending and resident groups

(for attending group Spearman’s ρ = −0.53, p < 0.001, and for resident group

ρ = −0.61, p < 0.001). This suggests that both attending and resident groups

tend to achieve higher scores on easier cases and lower scores on difficult cases. In

particular, Figure 4.3 shows that the relationship of the mean correctness scores

between attending and resident groups is positive, but not particularly strong

as indicated by a correlation r(49) = 0.32, p < .001. Attending group tends to

achieve better scores than resident group. This result indicates significant dis-

agreement between the two groups on the correct diagnosis. From Figure 4.3, we
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Figure 4.5: Time alignment of annotation and eye movement patterns. A time-

aligned visualization of verbal descriptions, thought unit annotations, and eye

movement patterns in Praat. A verbal transcript was split at the word level. Three

annotations were provided by two different dermatologists, one of whom completed

the annotation twice. The fifth tier shows eye movement pattern labels, which will

be analyzed in the next chapter.

can also see that a partial explanation for the poor correlation may be restricted

range with relatively few datapoints in the lower left quadrant. This is likely to

reflect that both attending and resident groups achieve relatively high scores in

general.

4.5 Eye Movement Data Analysis

Analysis of both fixation duration and saccade amplitude are conducted as a

function of ordinal fixation number for the three expertise-specific groups to de-

termine whether the two eye movement events, which are used as eye movement
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observation features, change over the time course of diagnosis and whether the

differences as a function of expertise levels might be revealed at ordinal time

points as shown in Figure 4.6. The first 20 fixations show a significant linear

trend for all three groups (ANOVA: F (19, 200) = 1.4, p < 0.01; F (19, 60) = 2.92,

p < 0.01 and F (19, 240) = 1.98, p < 0.01 respectively) and both attending group

and resident group have significantly longer fixation durations than lay persons

(F (2, 273) = 12.5, p < 0.001), which is also revealed through the histogram of

fixation duration distribution as shown in Figure 4.6 b and c. Similar analysis

on saccade amplitudes of the three expertise-specific groups shows that the first

20 saccade amplitudes of both dermatologists and residents follows a significant

linear trend (F (19, 200) = 1.24, p < 0.01; and F (19, 60) = 1.19, p < 0.01). There

was no effect for the novice group’s average saccade amplitudes.

These shorter fixation durations and longer saccade amplitudes at the initial

stage suggest both attending and residents started examining images with a quick

image scan. After that, fixation durations became longer and saccade amplitudes

decreased, suggesting a more thorough examination on some particular small

regions. On the other hand, novice group’s fixation durations increased at the

initial stage but there is no statistically significant change for their saccades.

These descriptive statistical analysis indicate the difference between the pro-

fessionals and the novice group, but they cannot tell us how the experts approach

the task, not to mention the viewing strategies which experts bring into the cog-

nitive processing. We thus apply our model on these time series data to reveal

the subtlety of the behavior patterns varying over time in the next chapter.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: (a) The average fixation durations by ordinal fixation number over the

course of diagnosis for attending (blue), resident (cyan), and novice (red) groups.

(b) The average saccade amplitudes by ordinal saccade number for the three groups.

(c)-(d) The histograms of the fixation durations for professionals, and novices. (e)-

(f) The histograms of the saccade amplitudes for professionals and novices.

4.6 Verbal Narrative Analysis

An annotation study was conducted on the experts’ transcripts to investigate the

verbalized cognitive processes of dermatologists on their paths toward a diagno-

sis (17). After transcribing the experts’ narration of the images, independent

experts identified conceptual units of thought (corresponding to particular steps

or information in the diagnostic process) in the transcripts. These thought units
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were subsequently time-aligned with the recorded speech and eye movement pat-

terns in the speech analysis tool Praat (115). Two highly trained dermatologists

annotated transcribed verbal descriptions with these thought units. A thought

unit is a single word or group of words that receives a descriptive label based on

its semantic role in the diagnostic process. Nine basic thought units, provided

by a dermatologist, were used for annotation. The provided thought unit labels

are patient demographics (DEM), body location (LOC), configuration (CON),

distribution (DIS), primary morphology (PRI), secondary morphology (SEC),

differential diagnosis (DIF), final diagnosis (Dx), and recommendations (REC).

Words not belonging to a thought unit were designated as ’None’. This time-

alignment is illustrated in Figure 4.5
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5

Hierarchical Dynamic Model

We briefly review non-homogenous Poisson process in order to derive completely

random measures. Based on this framework, we can analyze the class of stochastic

processes we will use extensively in our modeling work.

5.1 Poisson Processes

A stochastic process {Xt : t ∈ T} is a collection of random variables (81). The

variables Xt take values in the state space X. The set T is called the index set,

and can be discrete T = 0, 1, 2, ... or continuous T = [0,∞).

The Poisson process describes counting occurrences of events over time, such

as radioactive decay, telephone calls arriving at a switchboard, traffic accidents,

page view requests to a website, etc. The Poisson process is constructed based on

the Poisson distribution. It is written as X ∼ Poisson(λ) that X has a Poisson

distribution with parameter λ, if

P(X = x) = p(x;λ) =
e−λλx

x!
x = 0, 1, 2, ... (5.1)
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In particular, E(X) = λ and V(X) = λ. There are two useful properties of a

Poisson distribution: if X ∼ Poisson(λ), Y ∼ Poisson(ν), and X ⊥ Y , then

X + Y ∼ Poisson(λ + ν); if N ∼ Poisson(λ) and Y |N = n ∼ Binomial(n, p),

then the marginal distribution of Y is Y ∼ Poisson(λp).

The Poisson process with rate λ > 0 is a counting process {Xt : t ∈ [0,∞)}

with state space X = {0, 1, 2, ...}, where Xt is the number of events that occur in

the time interval [0, t], which fulfill the following conditions (We will write X(t)

instead of Xt):

• X(0) = 0

• For any 0 = t0 < t1 < t2 < · · · < tn, the increments X(t1)−X(t0), X(t2)−

X(t1), · · · , X(tn)−X(tn−1) are independent.

• The probability of the number of events that occur in a given interval de-

pends only on the length of the interval and not on its location.

• P(X(t+ h)−X(t) = 1) = λh+ o(h)

• P(X(t+ h)−X(t) ≥ 2) = o(h)

The second condition is the independent increment assumption which states that

the number of events occurring in disjoint time intervals are independent. The

third condition is the stationary increment assumption which states that the

probability of a given interval X(t + s) − X(t) is the same for all values of t.

The last two conditions means that the probability of an event in [t, t + h] is

approximately hλ(t) while the probability of more than one event is small.

Theorem 5.1.1. Then number of events occurring in an interval of length t is a

Poisson random variable with mean λt
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Figure 5.1: The construction of a completely random measure on Ω from a non-

homogeneous Poisson process on Ω×R. In this example, Ω is a bounded interval.

The colored surface illustrates the rate density for the Poisson process in Equation

5.3 which is the product of a uniform distribution (base measure) B0 on Ω and

an improper beta distribution on (0, 1). Sampling the Poisson process gives rise

to the non-zero endpoints in the plane, and these endpoints are connected by line

segments to the Ω-axis interval to form the random measure B =
∑∞

i=1 piδωi .
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To prove this theorem, we first construct a representation based on the bi-

nomial distribution by breaking the interval [0, t] into n non-overlapping sub-

intervals of length t/n and considering the number of these sub-intervals that

contain an event. The second and third conditions of a Poisson process imply

that each interval contains an event with the same probability λt/n which means

that X(t) is binomial distributed with parameters n and p ≈ λt/n. Second, when

n → ∞, the binomial distribution converges towards the Poisson distribution

with the mean np = λt. Third, since the last Poisson process condition implies

that P(2 or more events)→ 0, X(t) is a Poisson distributed random variable with

mean λt.

{Xt : t ∈ [0,∞)} is a non-homogeneous (non-stationary) Poisson process with

intensity function λ(t), t ≥ 0 if

• X(0) = 0

• For any 0 = t0 < t1 < t2 < · · · < tn, the increments X(t1)−X(t0), X(t2)−

X(t1), · · · , X(tn)−X(tn−1) are independent.

• P(X(t+ h)−X(t) = 1) = λ(t)h+ o(h)

• P(X(t+ h)−X(t) ≥ 2) = o(h)

For the non-homogeneous Poisson process, the probability of the number of events

that occur in a given interval depends on both the length of the interval and its

location. In particular,

Theorem 5.1.2. If Xt is a non-homogeneous Poisson process with intensity func-

tion λ(t), then X(s + t) − X(s) ∼ Poisson(m(s + t) − m(s)) where m(t) =∫ t
0
λ(s)ds. in particular, X(t) ∼ Poisson(m(t)). Hence, E(X(t)) = m(t) and

V(X(t)) = m(t).
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Figure 5.2: The top panel shows a measure B sampled from a beta process (blue),

along with its cumulative distribution function (red). The horizontal axis is Ω. The

bars of the blue segments are drawn from a Poisson process. The bottom panel

shows 20 samples from a Bernoulli process with base measure B, one per line.

Samples are represented as sets of points, obtained by calculating each point ω

independently with probability B({ω}).
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5.2 Completely Random Measures

A construction based on non-homogeneous Poisson process is significant to rep-

resent instances of the general family of random measures known as completely

random measures (116, 117) in terms of modeling and computation.

A completely random measure G on a probability space (Ω,R) is a random

measure such that, for any measurable disjoint sets A1, . . . , An, the random vari-

ables G(A1), . . . , G(An) are independent and G(
⋃n
i=1Ai) =

∑n
i=1G(Ai). Com-

plete random measure can be derived from an underlying non-homogeneous Pois-

son process as shown in Figure 5.1. Let ν(dω, dp) denote a measure on the product

space Ω×R, such that ν(Ω×R) =∞. Draw a sample {(ωi, pi)} from this Poisson

process. This sample yields a measure on Ω as follows:

G =
∞∑
i=1

piδωi (5.2)

{ωi} are referred as the atoms of the measure G and {pi} as the weights. Since

the Poisson process assigns independent mass to disjoint sets, this measure is

completely random.

5.3 Beta and Bernoulli Processes

The beta process was first defined for applications in survival analysis (118).

In (119), its definition has been relaxed onto more general spaces instead of a

distribution on cumulative hazard functions over the positive real line.

Definition 5.3.1. A positive random measure B on a space Ω is a Lévy process,

if the masses B(S1),...,B(Sk) assigned to disjoint subsets S1,...,Sk of Ω are in-

dependent. The Lévy-Khinchine theorem implies that a positive Lévy process is

uniquely characterized by its Lévy measure, a measure on Ω× R+.
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Xij

Gj

B

B0

i=1,...nj   

j=1,...n

   

Figure 5.3: The left panel shows the graphical model for the hierarchical beta

process. The right panel demonstrates example samples from this model with

c0 = cj = 2 and B0 beta-distributed on [0, 1]. From top to bottom are a beta

process sample B from B0, a beta process sample Gj from B, and 20 Bernoulli

process samples X1,j , ..., X20,j from Gj .

A beta process, as a special case of a Lévy measure can be defined as:

Definition 5.3.2. A beta process B ∼ BP (c, B0) is a positive Lévy process whose

Lévy measure depends on two parameters: c is a positive function over Ω called

the concentration function, and B0 is a fixed measure on Ω, called the base mea-

sure. In the special case where c is a constant it will be called the concentration

parameter. γ = B0(Ω) is called the mass parameter.

There are two cases with regard to whether base measure B0 is continuous or

discrete.
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• If B0 is continuous, the Lévy measure of the beta process is

ν(dω, dp) = c(ω)p−1(1− p)c(ω)−1dpB0(dω) (5.3)

on Ω× [0, 1]. As a function of p, ν(dω, dp) is a degenerate beta distribution.

To draw B ∼ BP (c, B0), draw a set of points (ωi, pi) ∈ Ω × [0, 1] from

a non-homogeneous Poisson process with base measure ν (see Figure 5.2),

and let B =
∑

i piδωi . B is discrete, and the pairs (ωi, pi) correspond to the

location ωi ∈ Ω and weight pi ∈ [0, 1] of its atoms, respectively. Although

the expectation of B is finite as long as B0 is finite, B is a countably infinite

sum because the Poisson process generates infinitely many points in terms

of ν(Ω× [0, 1]) =∞.

• IfB0 is discrete of the formB0 =
∑

i qiδωi , B has atoms at the same locations

B =
∑

i piδωi with pi ∼ Beta(c(ωi)qi, c(ωi)(1−qi)) which requires qi ∈ [0, 1].

The Bernoulli process is defined as:

Definition 5.3.3. Let B be a measure on Ω. A Bernoulli process is defined

with hazard measure B as X ∼ BeP (B), as the Lévy process with Lévy measure

µ(dp, dω) = δ1(dp)B(dω).

When B is continuous, X is a Poisson process with X =
∑N

i=1 δωi where

N ∼ Poi(B(Ω)) and ωi are independent realized from the distribution B/B(Ω).

When B is discrete with the form of B =
∑

i piδωi , then X =
∑

i biδωi where bi

are independent Bernoulli variables with the probability bi = 1 equal to pi.

A Bernoulli process can be viewed as a special case of a Poisson process with

the atom (singleton) weights at interval [0, 1], regardless of whether the base

measure B is discontinuous. An intuitive interpretation is to consider Ω as a space

of features and X as an object characterized by the features it possesses. The
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random measure B then renders the probability that X possesses each particular

feature ω, as shown in Figure 5.2.

The important property of the beta process and the Bernoulli process is that

they are a pair of conjugate stochastic processes. Let B ∼ BP (c, B0), and let

Xi|B ∼ BeP (B) for i = 1, ..., n be n independent Bernoulli process samples

from B. Let X1...n denote the set of observations {X1, ..., Xn}. The posterior

distribution of B given X1...n is still a beta process with updated parameters:

B|X1...n ∼ BP (c+ n,
c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi) (5.4)

This result is derived in (118).

5.4 Hierarchical Beta Process

In various domains, there are a number of groups of data which are yielded from

related, but distinct generative processes. Although we can analyze each group

independently, it neglects critical information shared among groups. On the con-

trary, combining groups in a single exchangeable dataset may lead to biased esti-

mates and obscure characteristics distinguishing particular groups. Hierarchical

Bayesian models provide an elegant compromise (73, 120). Estimates based on

posterior dependencies between parameters are “shrunk” together, so that groups

share the strength of each other while retaining distinctive features.

The hierarchical beta process allows us to model a type of stochastic phe-

nomena in which features are shared among multiple subjects from a number

of groups. To lay down its theoretical ground, we discussed the statistical and

computational properties of several more basic stochastic processes in previous

sections.
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(a) (b)

(c) (d)

Figure 5.4: Realizations from a hierarchal beta process with n=3 and n1 = n2 =

n3 = 20. We vary the concentration parameters: c1, c2 and c3, and the base

measure parameters: a0 and b0. In (a), the parameters are c1 = c2 = c3 = 1 and

a0 = 2, b0 = 6. In (b), the parameters are c1 = c2 = c3 = 1 and a0 = 2, b0 = 0.6.

In (c), the parameters are c1 = 0.02, c2 = 3 and c3 = 400, and a0 = 6, b0 = 2. In

(d), the parameters are c1 = 0.02, c2 = 3 and c3 = 400, and a0 = 0.2, b0 = 0.6.
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If we view Ω as a space of all the possible ”features”, X can be taken as an

object characterized by the features it possesses such that the random measure B

encodes the probability that X possesses each particular features. To construct a

hierarchical beta process, a beta process prior BP (c0, B0) is put on B, in which B

becomes a realization of the baseline measure B0. The advantage of this structure

is that we can share statistical strength among multiple object groups. Suppose

an object i within the group j is represented by a binary vector Xi,j of which each

component indicates whether the particular feature ω is possessed by the object

with a probability pjω specific to group j. These probabilities are atom weights

of a discrete measure Gj over the space Ω, and Gj itself is a realization of beta

process BP (cj, B). In summary, the model with graphical representation shown

in Figure 5.3is specified as following:

B ∼ BP (c0, B0) (5.5)

Gj ∼ BP (cj, B) ∀j ≤ n (5.6)

Xi,j ∼ BeP (Aj) ∀i ≤ nj (5.7)

According to Eqn. 5.5, we illustrate four sets of hierarchical beta process each

of which contains three groups of beta-Bernoulli processes from a common beta

process with specified parameters in Figure 5.4. This illustration highlights the

effect of the concentration parameters for c1−3 and mass parameters for (a0, b0).

5.5 Hierarchical Dynamic Model

The modeling approach of the expertise-specific groups’ eye movements for the

dermatological images is diagrammed in Figure 5.5.

In Figure 5.5 (a), the hierarchy represents the heterogeneous structure pro-

duced by individuals with different expertise levels examining medical image view-
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Figure 5.5: Graphical model representation of the hierarchical dynamic model.

B0 denotes a fixed continuous complete random measure as a global baseline on

the space of all possible eye movement patterns Θ. B denotes a beta process

to measure the eye movement patterns shared among N groups. Gj denotes a

beta process to represent the eye movement patterns shared among Nj subjects of

group j. The transition distribution πij of subject i in group j is deterministic. It

is determined by both the pattern indicator variable Pij of which each component

pijk is Bernoulli-distributed given the probability gjk and the transition variable

Eij which is Gamma-distributed given γj . z
(ij)
tij

and x
(ij)
tij

denotes the hidden state

variable and the observation variable of the hidden Markov model. Θ denotes

the emission distributions as eye movement patterns. The total number of eye

movement patterns exhibited is denoted by the dimensionality of Θ: K which is

depend on the beta process B0.
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ing strategies as well as to provide the flexibility of learning new patterns as new

eye movement data are observed. A group of subjects with the same expertise

level share a set of behavior patterns based on their knowledge. In accordance

with these common behavior patterns, each group member’s time-evolving be-

haviors also display their individualized temporal patterns in terms of unique

subsets of behaviors and/or their unique sequential combinations. At the lowest

level, each behavior is measured based on observed eye movements. Figure 5.5

(b) shows the graphical representation of the hierarchical dynamic model corre-

sponding to (a)’s structure. B0 is the global base measure on the space of all

possible behaviors Θ. The common behavior pattern of the group defined as

{(θk, Ek)} is characterized by the shared behaviors among p group members and

the probabilities that it possesses each particular behavior is encoded by B0. A

group member p performs individualized behavior pattern defined as {(θk, Spk)}

which is a Bernoulli process realization of the group common pattern {(θk, Ek)}.

The transition matrix πp follows a Dirichlet distribution specified by the non-zero

entries of Sp.

Since fixation and saccadic data are deployed in a sequential manner we use

a hidden Markov model (HMM) to characterize their temporal dynamic nature.

Since eye movements are inherently not smooth and highly correlated, the strong

Markovian assumption of HMMs is inappropriate. We therefore employ autore-

gressive HMMs to relax the Markovian assumption by modeling eye movement

data as a noisy linear combination of some finite set of past observations plus

additive white noise.
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5.5.1 Dynamical likelihoods

Auto-HMMs has been proposed to be a simpler but often effective way to describe

dynamical systems (121). Let y
(ij)
t denote the eye movement data of the ith subject

at time step t in the jth group. We associate each time-step’s observation with

one fixation and its successive saccade as one observation unit. Let x
(ij)
t denote

the corresponding latent dynamic mode. We have

x
(ij)
t ∼ π

x
(ij)
t−1

(5.8)

y
(ij)
t = A

x
(ij)
t
ỹ

(ij)
t + et(x

(ij)
t ) (5.9)

where e
(ij)
t (k) ∼ N(0,Σk) which is an additive white noise, Ak = [A1,k, ..., Ar,k] as

the set of lag matrices, and ỹ
(ij)
t = [y

(ij)
t−1, ..., y

(ij)
t−r]. In our case, we specify r = 1.We

thus define θk = (Ak,Σk) as one eye movement pattern.

5.5.2 Hierarchical prior

The hierarchical beta-Bernoulli processes proposed by Thibaux et al. (119) is

a suitable tool to describe the situation where multiple groups of subjects are

defined by countably infinite shared features following the Levy measure. We

utilize this process in the following specification based on our problem scenario.

Let B0 denote a fixed continuous random base measure on a measurable space

Θ = {θk} which represents a library of all the potential eye movements patterns.

To characterize patterns shared among multiple groups, let B denote a discrete

realization of a beta process given the prior BP (c0, B0). Let Gj be a discrete

random measure on Θ drawn from B following the beta process which represents

a measure on the eye movement patterns shared among multiple subjects within

the group j. Let Pij denote a Bernoulli measure given the beta process Gj. Pij is

a binary vector of Bernoulli random variables representing whether a particular
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eye movement pattern exhibited in the eye movement sequence of subject i within

group j. This hierarchical construction can be formulated as follow:

B|B0 ∼ BP (c0, B0) (5.10)

Gj|B ∼ BP (cj, B) j = 1, ..., N (5.11)

Pij|Gj ∼ BeP (Gj) i = 1, ..., Nj (5.12)

where B =
∑

k bkδθk with {θk} drawn from the library Θ and coupled with their

weights bk. bk is beta-distributed given b0 and c0. Furthermore, Gj =
∑

k gjkδθjk

shows that Gj is associated with both {θjk} which is a subset of countable number

of eye movement patterns drawn from {θk} and their corresponding probability

masses {gjk} given group j. {gjk} is also beta-distributed given bk and cj. The

combination of these two variables characterizes how the eye movement patterns

shared among subjects within expertise-specific group j. Thus Pij as a Bernoulli

process realization from the random measure Gj is denoted as:

Pij =
∑
k

pijkδθjk (5.13)

where pijk as a binary variable denotes whether subject i within group j exhibits

eye movement pattern k given probability mass gjk. Based on the above for-

mulation, for k = 1...Kj patterns {(θjk, gjk)} characterize how a set of common

eye movement patterns likely shared among group j and {(θjk, pijk)} represent

subject i’s personal subset of eye movement patterns given group j.

The transition distribution πij = {π
x

(ij)
t
} of the auto-HMMs at the bottom

level governs the transitions between the ith subject’s personal subset of eye move-

ment patterns θjk of group j. It is determined by the element-wise multiplication

between the eye movement subset {pijk} of subject i in group j and the gamma-
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distributed variables {eijk}:

eijk|γj ∼ Gamma(γj, 1) (5.14)

πij ∝ Eij
⊗

Pij (5.15)

where Eij = [eij1, ...eijKj ]. Pij determines the effective dimensionality of πij,

which is inferred from observations.

5.6 Posterior Inference with Gibbs Sampler

We use the Gibbs sampler to do the posterior inference. In one iteration of the

sampler, each latent variable is visited and assigned a value by drawing from the

distribution of that variable conditional on the assignments to all other latent vari-

ables as well as the observation. In particular, based on the sampling algorithm

proposed in (119), we developed a Gibbs sampling solution to the hierarchical

beta processes part of the model.

We adopt normal-inverse-Wishart distribution to provide an appropriate con-

jugate matrix prior to pattern space Θ. The conjugate prior on the set of design

matrix A and the noise covariance Σ is the matrix normal-inverse-Wishart prior.

This distribution places a conditionally matrix normal prior on A given Σ:

p(A|Σ,M,K) =
|K| d2
|2πΣ|

exp{−1

2
tr((A−M)TΣ−1(A−M)K)} (5.16)

and an inverse-Wishart prior on Σ

Σ ∼W(ν,∆) (5.17)

Consider a set of observations D = {X, Y }, the posterior distribution of

{A,Σ} can be decomposed as the product of posteriorA as MN(A;SyxS
−1
xx ,Σ, Sxx)
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with Sxx = XXT + K, Syx = Y XT + MK, and Syy = Y Y T + MKMT and the

marginal posterior of Σ as W(ν +N,∆ + Sy|x) where Sy|x = Syy − SyxS−1
xx S

T
yx.

When sampling the pattern indicator matrix Pj of group j, we need to address

two situations separately. For a pattern which has non-zero probability because

of either its priori or having already been instantiated by at least one subject, we

compute its posterior as follows.

Let {ω} denote the atoms (eye movement patterns) that have been observed

at least once. We define the variables to perform inference: b0 = B0({ω}), b =

B({ω}) =
∑

k bkδω, gj = Gj({ω}) =
∑

k gjkδω, and pij = Pij({ω}) =
∑

k pijkδω.

According to Equation 5.10 - 5.12, these variables from their respective processes

have the following distributions:

B(ω) ∼ Beta(c0B0(ω), c0(1−B0(ω))) (5.18)

Gj(ω) ∼ Beta(cjB(ω), cj(1−B(ω))) (5.19)

Pij(ω) ∼ Ber(Gj) (5.20)

We marginalize out G using conjugacy. Let mj =
∑nj

i=1 pij, and use Γ(x+1) =

xΓ(x), the posterior distribution of b given Pj:

p(b|b0, P ) ∝ p(b|b0)
Γ(mj + cjb)Γ(nj −mj + cj(1− b))

Γ(cjb)Γ(cj(1− b))
(5.21)

This posterior is log-concave, which we can use adaptive rejection sampling

method (122) to approximate in our Gibbs sampler. We can sample gj from

its conditional posterior distribution by conjugacy:

p(gj|b, P ) ∝ Beta(cjb+mj, cj(1− b) + nj −mj) (5.22)

Given the ith subject’s eye movements data sequence y
(ij)
1:Tij

in the group j,

transition variable Eij and within-group-j shared pattern set θ1:Kj , the current
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sampling pattern indicator pijk of pattern k exhibited by subjects i in group j

follows this posterior distribution:

p(pijk|P (−ijk), y
1:T

(ij)
ij
, θ

(−ijk)
1:Kj

, Eij, B0) ∝

p(pijk|P (−ijk), B0)p(y
1:T

(ij)
ij
|Pij, Eij, θ(−ijk)

1:Kj
)

(5.23)

where P (−ijk) denotes the set of all Pij except pijk. In particular, for the instan-

tiated patterns

p(pijk|P (−ijk), B0) =∫
p(pijk|Gj)

∫
p(Gj|B,P )p(B|B0, P )dBdGj

(5.24)

Both p(Gj|B,P ) and p(B|B0, P ) can be sampled as in Equation 5.22 and Equa-

tion 5.21, respectively.

For the yet-instantiated patterns of group j, since they can be directly sam-

pled from the conjugate prior distribution of Θ, we only need to infer the dis-

tribution of their number the prior distribution of which is Poisson-distributed

K ∼ Poi( c0λ
c0+k−1

). Given that all other patterns from all other groups are zero:

p(kij|Pij, y1:T
(ij)
ij
, θ

(−ijk)
1:Kj

, Eij, λ) ∝

p(pijk|P (−ijk), λ)p(y
1:T

(ij)
ij
|Pij, Eij, θ(−ijk)

1:Kj
)

(5.25)

Given transition distributions πij, shared patterns {θk}, and observations

y1:Tij , within forward-backward massage passing algorithm, we sample the for-

ward message to update the hidden state sequence x
(ij)
1:Tij

:

p(xtij |x(tij−1), y
(ij)
1:Tij

, πij, {θk}) ∝

π
x

(ij)
(tij−1)

N(y
(ij)
tij ;A

x
(ij)
tij

ỹ
(ij)
tij ,Σx

(ij)
tij

)mt+1,t(x
(ij)
tij )

(5.26)

5.7 Synthetic Experiment

We generated six 4 dimensional time series from an auto-regressive HMM y
(i)
t =

a
z

(i)
t
y

(i)
t−1 + e

(i)
t (x

(i)
t ) with ak ∈ {−0.9,−0.6,−0.3, 0, 0.3, 0.6, 0.9}, and noise covari-
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ance Σk drawn from an IW (6, 0.2I4) prior. We use these simulated time series

to test the model. The shared patterns were sampled from a beta process using

a = 2, b = 6, as described in Section 2.7. This setting allows us to simulate obser-

vation sequences with their true states as shown in Figure 5.6 (a). In particular,

different subset of ak are randomly selected to generate each time series.

We used six HMMs tied together with a shared set of transition and dynamic

parameters, and infinite Gaussian mixture models to compare the performance

between these models on the generated time series. Each model was initialized

with the sufficient statistics of the simulated data. The results shown in Figure

5.6 indicate our model performs better at distinguishing these dynamical ma-

trices. The Hamming distance error in Figure 5.6 (b) indicates our model fits

the observation better. One possible cause is that the iGMM makes a strong

assumption that the eye movement data are independent which is hardly true.

On the contrary, our model only assumes that the eye movement patterns are ex-

changeable in order. What’s more, the iGMM and HMM approaches assume that

each time series exhibits the same structure. Our model allows each time series

to share a subset of common structures. Additionally, our model and the HMM

take sequential information of eye movements into account. Example segmenta-

tions representing the median Hamming distance error are shown in Figure 5.6

(c) and (d). In particular, the key point is illustrated that our model emphasizes

the sharing of behavior patterns instead of assuming all time series are behaving

on the same dynamics.
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(a)

(b)

(c) (d)

Figure 5.6: (a) Simulated sequences from 6 AR-generated time series and their

true state sequences (cyan). (b) The medians and 10th and 90th quantiles of Ham-

ming distances between the true and estimated mode sequence on 100 trials. (c)-(d)

Typical segmentations for the six time series at 550 sampling iterations for the two

models. The top and bottom panels display the estimated and true sequences.
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6

Discovery of Eye Movement

Patterns

Our model converges to generate 387 eye movement patterns based on eleven

attending subjects diagnosing on fifty dermatological images. These results allow

us to analyze and describe the dermatological images based on a novel perspective

of experts’ perceptual strategies.

6.1 Eye Movement Pattern Estimation

In Figure 6.1, our model generated 87933 fixation-saccade units to simulate the 15

professionals including both attending and resident groups. We then compare the

distributions of the simulation and the observations. Note that the results also

validate the discovered eye movement patterns, because such simulation needs

to generate a set of realizations of eye movement patterns explicitly from the

hierarchical prior, simulate multiple possible sequences of these patterns, and
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Figure 6.1: Quantitative performance evaluations. (a) The histogram of the

observed fixation duration distributions of the 15 professionals including both at-

tending and resident group (red) and our model’s simulations over 50 images (blue).

(b) The histograms of the saccade amplitude distributions of the 15 professionals

(red) and our model’s simulations over 50 images (blue).

then we are able to draw fixation-saccade samples from them.

Figure 6.2 illustrates the eleven dermatologists diagnosing a case of a skin

manifestation of endocarditis by showing one set of observed eye movement se-

quences and the model’s discovered eye movement patterns shared by the der-

matologists which correspond to descriptively meaningful perceptual units. In

the medical image, there are multiple skin lesions spreading over the thumbnail

and tip, the two parts of index finger, and the middle finger. A primary abnor-

mality is on the thumb tip. The eye movement sequences in Figure 6.2 indicate

that dermatologists examine the image in a highly patterned manner by fixating

on the primary abnormality heavily and switching their visual attention actively

between and within the primary and secondary abnormalities. Our model de-

composes each eye movement sequence into several subsets of its segments. Each
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subset is characterized by one estimated latent state and a Gaussian emission dis-

tribution which summarizes the similar temporal-spatial properties shared among

multiple sequences. The way that the patterns are shared among the subjects

is also indicated by their matrix in Figure 6.2. For example the first subject’s

eye movements evolve over time with the first eight out of nine patterns, and

the eleventh subject has seven patterns except pattern 5 and pattern 9. In other

words, most but not all patterns are shared by all physicians, as one would ex-

pect when modeling human behaviors where there almost certainly exist some

variation and some individual differences. Again, our model is able to capture

both the shared (stereotypical) behaviors and the individualized (idiosyncratic)

ones. Transition probability matrices indicated these patterns are persistent with

high self-transition probabilities which measure the likelihood of a given pattern

transiting into itself in our dynamic model. In Figure 6.3, we demonstrate the

same inference process on another image.

Some similar patterns also emerged in the resident group but are lacking in

the novice group as shown in Figure 6.4 (c). This suggests that experts, equipped

with domain knowledge organized in finer gradations of functional categories, can

discriminate the significance of their findings in a particular context. In contrast,

in Figure 6.4 (c) the novices failed to do so, although they perceive the same

abnormalities too. Compare Figure 6.4 (b), Figure 6.4 (b) and Figure 6.4 (b), the

difference between the transition probability matrices of the medical professional

groups and the novice group suggests professionals’ eye movement patterns are

more persistent than the novices’.

Figure 6.4 and 6.5 show the discovered eye movement patterns from three

expertise-specific groups on two dermatological images. These two images are

among the most difficult cases to make a correct diagnosis, as estimated by der-

matologists, and some of the patterns exhibited on them are critical to inform
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(c) (d)(e)

(b)

(a)

Figure 6.2: The model performance running on the eye movement data of 11

subjects viewing one case. (a) shows the original medical image. (b) is primary

and secondary abnormalities were explicitly marked and numbered by an experi-

enced dermatologist. (c) shows eleven time series, each observation of which is

composed of 4 components: log values of fixation location (xy coordinate), fixation

duration and saccade amplitude. (d) shows the HMM-derived eye movement pat-

tern sequences for the corresponding 11 time series with 4 chains of 55000 sampling

iterations. The color coding corresponds to the segments of the each specific eye

movement pattern. (e) shows the shared eye movement pattern matrix of which

the row number indicates the subjects and the column number indicates the shared

patterns. For example, yellow color at the first row represents the time series of

subject 1 exhibits pattern 1-7 but lacks pattern 8 and 9.
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some properties of the images.

Taking the first illustrated image in Figure 6.4 for example, there are multiple

skin lesions spreading over the thumb nail and tip, the two parts of index finger

and the middle finger. A primary abnormality is on the thumb tip. The eye

movement sequences indicate that attending dermatologists fixated on the pri-

mary abnormality heavily and switched their visual attention actively between

and within the primary and secondary findings. The same patterns are also ex-

hibited in the resident dermatologist group. The reason for lacking other patterns

is probably because the number of participants at this expertise-specific group is

limited in the dataset (only four participants). In contrast, the novice group ex-

hibits significantly different eye movement patterns compared to the other groups.

According to the novices’ patterns, we can see shorter saccades so as to leave long

fixation durations at the center of the image as seen in Pattern 1 and 9 of Figure

6.4 (c) and do not exhibit the eye movements switching between primary and

secondary abnormalities as dermatologists’ Pattern 2, 3, and 5 in Figure 6.4 (a).

What is more, the more random transition matrices in Figure 6.4 (c) indicate that

novice group’s patterns are not persistent, which suggests that novices’ focus of

attention is more random when viewing the image. We reason that these rela-

tively unstable viewing behavior reflect that fact that the novice cannot perceive

the important diagnostic relationships among the multiple abnormalities and fail

to prioritize them. All the pattern differences between expertise-specific groups

holds for the other images studied here.

Some shared patterns emerged in the attending and the resident groups but

are lacking in the novice group as shown in Figure 6.4 (c). This suggests that ex-

perts, equipped with domain knowledge organized in finer gradations of functional

categories (36), can discriminate the significance of their findings in a particu-

lar context. In contrast, in Figure 6.4 (c) the novices failed to do so, although
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(c) (d)(e)

(b)

(a)

Figure 6.3: The model performance running on the eye movement data of 11

subjects viewing one case. (a) shows the original medical image. (b) is primary

and secondary abnormalities were explicitly marked and numbered by an experi-

enced dermatologist. (c) shows eleven time series, each observation of which is

composed of 4 components: log values of fixation location (xy coordinate), fixation

duration and saccade amplitude. (d) shows the HMM-derived eye movement pat-

tern sequences for the corresponding 11 time series with 4 chains of 55000 sampling

iterations. The color coding corresponds to the segments of the each specific eye

movement pattern. (e) shows the shared eye movement pattern matrix of which

the row number indicates the subjects and the column number indicates the shared

patterns. For example, yellow color at the first row represents the time series of

subject 1 exhibits pattern 1-7 but lacks pattern 8 and 9.
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Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8 Pattern 9

.

(a) Nine inferred eye movement patterns from the attending group. The first

column is the eye movement sequences. The second column is the transition

matrices indicating the pattern persistency.

Pattern 6Pattern 5Pattern 4Pattern 1 Pattern 2 Pattern 3

(b) Six inferred eye movement patterns from the residents.
Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8 Pattern 9 Pattern 10 Pattern 11 Pattern 12 Pattern 13 Pattern 14 Pattern 15 Pattern 16

(c) Sixteen inferred eye movement patterns from the novices.

Figure 6.4: The eye movement patterns of the three expertise-specific groups

signify the different perceptual behaviors.
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their eye movement patterns indicate that they notice the same abnormalities

too. When comparing the transition probability matrices between the expertise-

specific groups in the second column of Figure 6.4 (a-c) and Figure 6.5 (a-c), it

becomes clear that professionals’ eye movement patterns are more persistent than

the novices’.

6.2 Eye Movement Pattern Interpretation

To further analyze the meanings of the discovered eye movement patterns, we

mapped thought units (see section 3.2) to patterns discovered in the eye movement

data in order to see whether they correspond consistently during the diagnostic

process. Pattern occurrence and thought unit alignment resulted in assignment

of each fixation in a complete eye movement sequence to a specific pattern and to

a thought unit such as PRI or LOC (or None). Although thought units are often

spread out across eye movement patterns, some trends can be discerned. Initial

integration of eye movement patterns with thought units was accomplished by

calculating the counts of their time-aligned correspondence in Figure 6.6. Anal-

ysis on the left column diagram of Figure 6.6 shows, for example, that primary

morphology (PRI) is closely related to the combination of two specific patterns:

Pattern 2 is characterized by fixations switching between the primary and the

different secondary abnormalities; and Pattern 7 by long fixations only on the

primary abnormality. It is worth to point out that identification of the primary

morphology is an early key diagnostic step which helps the physician to place

the lesion in the correct category. Pattern 7 has relationship to location (LOC)

which appears to correspond to the primary morphology location. Pattern 4

consists of eye movement sequence segments which are characterized by shorter

fixation durations and longer saccades. This scanning behavior corresponds to
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Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8 Pattern 9

(a) Nine inferred eye movement patterns from the attending group.

We illustrate the eye movement sequences, the transition matrices,

and the color-coded patterns.

Pattern 1 Pattern 2 Pattern 3 Pattern 4

(b) Four inferred eye movement patterns from

the residents.
Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 10Pattern 9Pattern 8

(c) Ten inferred eye movement patterns from the novices.

Figure 6.5: The eye movement patterns of the three expertise-specific groups.
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the thought units, including distribution (DIS), secondary morphology (SEC), di-

agnosis (DX) and differential diagnosis (DIF). For example, the scanning pattern

coupled with thought unit DX is possibly related to confirmation of secondary

findings to support or rule out diagnostic hypotheses.
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(a)

(b)

Figure 6.6: Analysis of the correspondence between eye movement patterns and

thought units for the two example images. For each pattern we plotted the counts

of fixations which are labeled as the corresponding thought units. The pattern

numbering is consistent with previous figures.
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7

Dermatological Image

Understanding

7.1 Image Understanding

There has been significant progress in automatic algorithms for image under-

standing (123, 124, 125, 126, 127, 128, 129, 130, 131), as shown in Figure 2.2

(a). However, when the cues in images are not sufficient to generate a good in-

terpretation automatically, active learning methods are necessary to incorporate

human perceptual capability into this process (132, 133, 134, 135, 136), as shown

in Figure 2.2 (b). The idea of active learning is that automatic machine learning

algorithms can achieve greater accuracy with fewer training labels by querying

the user to provide support for the uncertain elements (137).

Besides locating and identifying the objects of interest in an image by bound-

ing boxes or image segments with semantic labels (123, 124), recent image un-

derstanding studies also aim at exploring the underlying scene structure by es-
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timating a qualitative 3D layout of the scene to recover the spatial relationships

among multiple objects in the original 3D space (125, 126, 127, 128). These

geometric approaches approximate the 3D space by planar surfaces or volumes

from monocular images and some of them extend the idea to combine global con-

sistency constraints (129). Dynamic 3D scene reconstruction is another focus.

Various computation approaches such as the Markov random field and generative

non-parametric graphical models are developed to robustly infer the 3D layout of

roads, the locations of buildings, as well as dynamic traffic in the scene (130, 131).

There is significant success with the above automatic algorithms. However,

human interaction becomes critical when key information such as strong edges

and lines cannot be detected easily (135, 138). To borrow human perceptual

power, active learning was proposed and benefited a broad range of computer

vision applications (132, 133, 134, 135, 136). Essentially, the advantage of active

learning methods relies on combining the human capability of image understand-

ing with rich information from images using machine learning approaches. This is

particularly important when understanding images requires domain expertise and

rich background knowledge. Some active learning studies attempted to maximize

the knowledge gain from users while valuing their effort (132). Others strived

to simplify human interaction by fully utilizing the automatic algorithms and

providing intuitive scribbles (134, 135).

Image understanding in knowledge-rich, visual domains, such as image in-

spection, is challenging, since complex perceptual and conceptual processing are

engaged to transform image pixels into meaningful contents at semantic level

(36). Active learning methods via manually marking and annotating become not

only labor intensive for experts but also ineffective because of the variability and

noise of experts’ performance (41, 135). To address this problem, we propose

to combine perceptual expertise as an effortless yet valuable cognitive resource
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into active learning methods of image understanding. This requires a means to

extract and represent experts’ perceptual expertise in a form that is ready to be

applied in active learning schemes, as shown in Figure 2.2 (c).

When expanding the analysis to multiple images, we discover several basic

yet distinctive types of patterns shared across multiple images which we term

as signature patterns with respect to the patterns’ fixation duration and saccade

amplitude.

7.2 Signature Pattern Recognition

We define a type of signature patterns by three criteria. First, its self-transition

probability, which is indicated by the transition matrix, is no less than the median

0.65, so the signature patterns are stably retained by attending group. Second,

it manifests clear diagnostic regions, for example pattern 7 in Figure 6.2 cor-

responds to a long fixation duration on the primary abnormality. Third, the

temporal-spatial properties of signature pattern exemplars within each type are

similar but distinctive from other types, which is elaborated in Figure 7.1. The

other discovered patterns are not identified as signature patterns because they

lack one or more of the three criteria. In the illustrated case in Figure 6.2, there

are three patterns recognized as the signature patterns. Pattern 2 and Pattern

5 are characterized by fixations switching back and forth between the primary

and the different secondary abnormalities with long saccade amplitudes and rela-

tively short fixation durations. These patterns suggest that subjects compare and

associate the two types of abnormalities. Pattern 7 is characterized by a series

of long-duration fixations only on the primary abnormality with extremely short

saccades. This pattern suggests that subjects fixate on the primary abnormality

to make a diagnosis.
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Figure 7.1: Distinctive temporal-spatial properties of 217 fixation-saccade pairs

from 12 exemplars forms the three types of signature patterns. Each blue dot repre-

sents one eye movement unit from a signature pattern exemplar. The exemplars are

indicated by dash-line Gaussian emission distributions estimated from our model.

Both eye movement units and their corresponding exemplars are projected from

a four-dimension space (including x-y coordinate, fixation duration and saccade

amplitude) onto this space. The signature patterns are characterized by a three-

component Gaussian mixture. The one on the upper left represents Concentrating

Pattern, the one on the right captures Switching Pattern, and the one on the lower

middle represents Clutter Pattern. For each type, we project the units back into

x-y coordinate space centered on the origin and visualize them on the right side of

the main diagram.

Based on the eye movement patterns generated from our model over fifty im-

ages, we are able to specify three types of signature patterns. The first type is
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Figure 7.2: ROC curves summarizing categorization performance for the four per-

ceptual categories. Left: Area under average ROC curves for different numbers of

exemplar patterns. Right: We compare our model using two different classification

techniques with canonical Hidden Markov Models.

named Concentrating Pattern which is characterized by a series of long-duration

fixations and short-amplitude saccades usually fixating on primary abnormali-

ties. The second is the Switching Pattern characterized by a series of relatively

short-duration fixations and long-amplitude saccades usually switching back and

forth between two abnormalities. And the third is Clutter Pattern character-

ized by a series of shorter fixations and relatively long saccades usually scanning

within localized abnormal regions. To quantify the temporal-spatial properties

of the three types of signature patterns, we illustrate some of their exemplars in

Figure 7.1.

The estimation of the signature patterns based on their exemplar features
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can be solved using different classification techniques. Since Gaussian mixture is

one intuitively appropriate tool to describe the distributions of these signature

patterns according to Figure 7.1, we first adopt quadratic discrimination analysis

(QDA) by assuming a simple parametric model for the densities of the temporal-

spatial properties of the eye movement units. A training set includes 217 eye

movement units of 12 exemplar patterns from 10 images, which are shown in

Figure 7.1. We test the validity of the classifier through comparing the image

categorization performance based on QDA with K nearest neighbors (K-NN) and

experts’ performance.

7.3 Perceptual Category Specification

Based on our consulting dermatologist’s suggestion, we propose four broad per-

ceptual categories in terms of lesion distribution and configuration. We further

determine the associations between the combinations of the exhibitions of these

three types of signature patterns and the four specified categories:

• If the set of eye movement patterns exhibited on an image only includes

Concentrating Patterns, the image is categorized as Localized which means

that the image contains a solitary lesion as primary abnormality.

• If the set of eye movement patterns exhibited on an image solely includes

Switching Patterns, the image is categorized as Symmetrical which means

that the lesions in the image are symmetrically distributed.

• If the set of eye movement patterns exhibited on an image includes both

Concentrating Patterns and Switching Patterns, the image is categorized as

Multiple Morphologies which means that the lesions in the image belong to
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Figure 7.3: Two false positive cases. The left panel shows an image labeled as

Localized lesion with Clutter Pattern recognized on it. The right panel shows a

case labeled as symmetric lesion with Clutter Pattern recognized on it. Image used

with permission from Logical Images, Inc

different dermatological morphologies and usually one lesion is identified as

primary abnormalities and the other are secondary ones.

• If the set of eye movement patterns exhibited on an image includes Clutter

Patterns, the image is categorized as High-Density Lesions which means

that the image contains multiple lesions distributed in either scattered or

clustered manner.

According to the signature patterns recognized on the images, we can catalogue

the images into the four categories as shown in Figure 9 (a)-(d).

To measure the performance of our image categorization approach, we conduct

an experiment following the same procedure by recruiting another ten dermatol-

ogists and using a different set of forty dermatological images as stimuli. These

images are also randomly selected from a dermatological image database. Our

three consulting dermatologists achieve consensus to categorize the forty images

into the four perceptual categories. We use 232 estimated eye movement pat-

terns on these images and the ones from the previous experiment as a testing
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set. In Figure 7.2 (a), we examine categorization performance given training

sets containing between 4 and 24 exemplars. We assume each eye movement

sequence exhibits the same set of patterns in order to implement the canonical

HMMs. We see that our model lead to significant improvements in categoriza-

tion performance, particularly when few training exemplars are available. The

highest accuracy is achieved on detection of the Multiple Morphologies category.

This may be caused by the requirement of detections of the two different signa-

ture patterns to determine the varied distributions and significance of the lesions.

The difference between Multiple Morphologies images and Symmetrical images is

that the eye movement patterns exhibited on the latter do not contain Concen-

trating Pattern. This is because the symmetrical visual-spatial structures imply

that lesions are equivalent important without single primary one for the subjects

to concentrate their focus on as shown in Figure 6.4 (b). Since the specifications

of signature patterns are heuristic, we may be able to improve the categorization

performance by identifying extra meaningful and distinctive eye movement pat-

terns, and these extra patterns may also lead to image categorization at a finer

detailed level.

The difference between Multiple Morphologies images and Symmetrical im-

ages is that the eye movement patterns exhibited on the latter do not contain

Concentrating Pattern. This is because the symmetrical visual-spatial structures

imply that lesions are equivalent important without single primary one for the

subjects to concentrate their focus on as shown in Figure 6.4 (a) and (b). Since

the specifications of signature patterns are determined heuristically, we may be

able to improve the categorization performance by identifying additional mean-

ingful and distinctive eye movement patterns, and these extra patterns may also

lead to image categorization at a finer detailed level.
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Since the dermatological images are collected for future diagnosis, and training

purposes, the dermatologists took them in a particular way. They tend to center

primary abnormalities and preserve as much related contextual information as

possible, such as patients’ demographic information, body parts, lesion size and

so on. Nonetheless, these high-resolution images have complex backgrounds, and

large appearance variations for luminance and camera angles. These factors cause

some false alarms, as shown in Figure 7.3. In particular, photographic scales of

some lesions in the images tend to influence our model’s performance. For in-

stance, the localized lesions are at large scale in some images, leading to cluttered

eye movement patterns rather than concentrating ones as shown in Figure 7.3 (a).

In another case shown in Figure 7.3 (b) there is an angle between the camera and

the patient’s back, so the symmetric shape lesions are skewed in the image. When

dermatologists are examining this image, they tend to focus on the half of the

lesion that are closer. This leads to a Clutter Pattern instead of a Symmetric

Pattern. Since both the number of fixations and their durations are indicative

of the depth of information processing associated with the particular image re-

gions, the exhibition of Concentrating Pattern usually corresponds to a localized

primary abnormality as shown in Figure 6.4 (a) and (c). The saccade amplitudes

of Switching Pattern and Clutter Pattern inform both the image visual-spatial

structures (symmetry) as in Figure 6.4 (b) and distributions of multiple abnor-

malities (primary abnormality versus secondary abnormality) as in Figure 6.4

(c).

Note that the different viewing times of dermatologists yield length-varying

eye movement sequences. Since each sequence is modeled with one HMM sepa-

rately, the emission distributions of which group multiple fixation-saccadic units

into one pattern exhibited repeatedly. Thus longer sequence means that its cor-

responding longer HMM draws more pattern samples from the prior distribution,
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so besides containing more repeated common patterns, it likely has some unique

patterns.
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(a) Localized lesions with Concentrating Pattern.

(b) Symmetrical distribution with the Switching Pattern.

(c) Multiple Morphologies with the Switching Pattern and the Concentrating Pattern.

(d) High-density Lesions with the Clutter Pattern.

Figure 6.4: Example images with the signature patterns are illustrated.
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Conclusions

8.1 Overview of the Computational Framework

The fundamental computational problem of this thesis is how to infer and rep-

resent perceptual skill based on impoverished human behavioral data, and how

to use manifested perceptual skill to advance image understanding in domain

of expertise. I then proposed a solution to combine hierarchical stochastic pro-

cesses with dynamic models based on the principles of non-parametric Bayesian

inference. This computational framework has four major components, which

we illustrated on studying the perceptual and conceptual processing of three

expertise-specific groups of subjects.

The first component is to assume a hypothesis space of candidate extensions

for the structure to be learned. In a continuous measurable feature space of

behaviors, such as the eye movements, a natural hypothesis space consisted of all

potential statistical regularities in that space. These hypotheses can be thought

of as a possible “micro-rule” for generalizing the eye movements across multiple
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stimuli, or alternatively, as a candidate “feature” that could distinguish expertise-

specific visual behaviors.

The second component in the framework is to formulate and incorporate prior

knowledge to each element of the hypothesis space. The prior encodes our beliefs

about which subset of hypotheses are the most likely candidates for new observed

eye movement data in general, independent of any observed data. In some sense,

the hypothesis space itself is a derivation of the prior. In some extreme cases,

excluding logically possible hypotheses from our hypothesis space is equivalent to

including them but assigning them a prior probability of zero. Over a hypothesis

space of eye movement patterns, our prior distribution might embody the knowl-

edge that some patterns tend to be very common within a group of subjects with

the same expertise level, and thus give preference to eye movement patterns with

approximately that property. Over a hierarchy of expertise-specific groups, our

prior assumed that these eye movement patterns map onto related yet distinctive

groups of subjects’ eye movements.

The third component is a generative model of the observed eye movement se-

quences, which allows us to evaluate hypotheses base on their likelihood of giving

rise to the eye movements we observed. The most basic of the Markov processes

is the hidden Markov model (HMM), which assumes that the data can be mod-

eled as conditionally independent given an underlying discrete-valued Markov

sequence. Motivated by our particular application of human eye movements, we

relax its assumption from conditionally independent observations to conditionally

linear dynamics using autoregressive process.

Finally, the actual generalization of eye movement patterns is determined by

the posterior probability and the principle of hypothesis averaging. The posterior

probability of each subset of patterns is equal to the product of its prior probabil-

ity and dynamic likelihood. This gives the rational degree of belief in each pattern
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subset as a function of both our prior knowledge about more or less reasonable

pattern candidate extensions and the statistical information carried by the ob-

served eye movement sequences. When the posterior is spread out broadly over

many possible eye movement patterns, the predictive procedure is essentially an

average of all of these possible “micro-rules”. When the posterior is concentrated

on a single subset of eye movement patterns, the weighted average will only focus

on the extension of that one best hypothesis.

Although we can analyze the four components separately, to really understand

the framework and its implication, it is necessary to see how these components in-

teract as a function of the prior knowledge which the subjects bring into their task

and their behaviors which are observed. I explored these issues over the course

of dermatologists’ examining medical images and reached several conclusions.

8.2 Summary of the Major Contributions

Human intelligence is valuable in terms of providing directions of building smarter

machines. How to extract and represent such intelligence and incorporate it into

computational approaches to provide effective computing solutions for digital

image retrieval is challenging.

One of the obstacles is that the image-feature-based visual similarity does

not necessarily correspond to subjective perceptual similarity. For instance, a

query image is used in traditional content-based image retrieval as an example

to illustrate a user’s information need. A critical retrieval step is to evaluate the

significance of the visual cues in the query image so as to effectively interpret

it and extrapolate the user’s intentions. However, in knowledge-rich domains

such as image-based medical diagnosis it is impossible to evaluate visual cues of
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medical images without the inputs of domain experts’ perceptual and conceptual

reasoning processes.

Through our studies we can summarize subjects’ perceptual skill in an ob-

jective and automatic manner. Understanding of the relationships between eye

movement patterns, image properties, and semantic concepts will be beneficial

from at least several viewpoints. First, since eye movement data are deployed

in a sequential manner, exploration of their temporal characteristics will provide

us deeper understanding of the influence of expertise on perceptual processing.

Second, compared to the observed eye movement data, the extracted patterns

have semantic features and can serve as a more robust and consistent human

capability measure. Third, instead of annotation, our learned perceptual skill

can be embedded into an active learning scheme as a more efficient approach to

integrate human knowledge into image understanding.

Solely behavioral variables from task manipulations, such as response time

or accuracy, are insufficient to determine whether a particular cognitive pro-

cess is engaged or whether a particular cognitive architecture theory is correct.

Since visual attention, as a selective dynamic cognitive process, is dominated by

knowledge, interest, and expectations of the scene (1, 23), it is possible to ac-

quire insight into some aspects of subjects’ interests or cognitive strategies by

analyzing their eye movement sequences while they are pursuing certain tasks

in domains of expertise where perceptual skills are paramount. One key step to

manifest perceptual skill and uncover underlying cognitive processes is to discover

expertise-specific perceptual viewing behaviors and differentiate the stereotypical

and idiosyncratic behavioral patterns that characterize a group of subjects at the

same training level. Addressing this problem requires segmenting an eye move-

ment sequence into a set of time intervals that have a useful interpretation, as

well as summarizing the commonality of eye movement patterns shared within
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and between expertise-specific groups. Furthermore, these meaningful patterns

enable us to uncover time-evolving properties of subjects’ perceptual reasoning

processes and to understand images at a domain-knowledge level.

Our approach identified expertise-specific eye movement patterns that exist

over time. Dermatology images and experts are an appropriate test-bed, but we

can also apply our approach to other problem domains. We elaborate 50 images

and delivered an extensive discussion on two illustrated cases. As our future

work, we will use the discovered meaningful patterns to parse corresponding im-

age features, which correspond to deep perceptual skills (as opposed to detailed

surface features only), and that, accordingly, have potential to fill the semantic

gap described at the paper’s beginning.

We successfully discover certain aspects of experts’ domain-specific knowledge

by summarizing stereotypical and idiosyncratic behavioral patterns from their eye

movements while examining medical images. The domain-specific knowledge un-

veils the meaning and significance of the visual cues as well as the relations among

functionally integral visual cues without segmentation or processing of individual

objects or regions. This will benefit the traditional pixel-based statistical methods

for image understanding by evaluating perceptual meanings and relations of the

image features which spatially correspond to the eye movement patterns. This

combination of expert knowledge and image features will help us to generalize

our approach to images for which there is no experts’ eye movements recorded.
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9

Future Work

Although Gibbs sampler provides theoretical guarantees of accuracy, mixing rates

on large datasets can often be slow, and difficult to characterize in general. Vari-

ational methods provide an alternative by a fast deterministic approximation to

posteriors with an optimization criterion that can be easily utilized to assess

convergence.

Another keen interest is online learning. Gaze-contingent applications require

inferences to be made sequentially as eye movement data arrive. The batch

processing algorithms may also be impractical for long time series. The standard

issue of a progressively impoverished particle representation introduces challenges

that are interesting to explore in the future.

We obtain certain aspects of experts’ domain-specific knowledge by summa-

rizing their perceptual skills from their eye movements while diagnosing images.

The domain-specific knowledge unveils the meaning and significance of the vi-

sual cues as well as the relations among functionally integral visual cues without

segmentation or processing of individual objects or regions. This will benefit

the traditional pixel-based statistical methods for image understanding by eval-
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uating perceptual meanings and relations of the image features which spatially

correspond to the eye movement patterns. This combination of expert knowledge

and image features allows us to generalize our approach to images on which there

is no record of experts’ eye movements.

Many potential new applications would require estimation of the subjects’ eye

movement patterns in real time based on the observed eye movements. Here, we

use sequential Monte Carlo methods to filter the current latent eye movement

pattern based on the learned library of eye movement patterns from experienced

dermatologists.

In the future, we will also design and develop a prototype of an adaptive image

retrieval system. This system will retrieve a collection of medical images based

on the inferred informational needs from users’ eye movements. Our model will

be integrated into this system as an component to evaluate users’ informational

interests through the real-time estimation of meaningful eye movement patterns.

Besides, we attempt to project the meaningful eye movement patterns from

their spatial-temporal space into image feature space. This will facilitate us to

identify valuable diagnostic image features and generalize eye movement patterns

over the different dermatological images. Evaluation of a subject’s expertise level

is another future application in medical training. We also intend to evaluate

diagnostic processes given a subject’s visual interaction with test images through

calculating the model’s posterior probability. Compared to simply calculating

diagnosis error rates to evaluate expertise level, our approach can unveil which

diagnostic reasoning steps lead to wrong diagnosis and the possible cognitive

factors such as misconception, miscategorization and misperception, and form

the basis of support systems.
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